Record Nr. UNINA9911006671703321 Autore Wu Yuan Titolo Impinging streams: fundamentals, properties, applications / / Yuan Wu Pubbl/distr/stampa Amsterdam ; ; New York, : Elsevier Beijing, PR China,: Chemical Industry Press, 2007 **ISBN** 1-281-07699-6 9786611076993 0-08-055462-8 Edizione [!st English ed.] Descrizione fisica 1 online resource (391 p.) Disciplina 530.414 660.2 Soggetti Chemical reactors Change of state (Physics) Lingua di pubblicazione Inglese **Formato** Materiale a stampa Livello bibliografico Monografia Note generali Description based upon print version of record. Nota di bibliografia Includes bibliographical references (p. 341-354) and index. Nota di contenuto Front Cover; Impinging Streams: Fundamentals - Properties -Applications; Copyright Page; Contents; Foreword; Acknowledgments; Introduction; 1 Enhancement of transfer between phases and origin of impinging streams; 2 Basic principles of impinging streams; 3 Experimental evidence for enhancing transfer; 4 Other performances of impinging streams; 5 Extension of impinging stream technology; Part I: Gas-Continuous Impinging Streams; Chapter 1. Flow of Continuous Phase; 1.1 Flow characteristics; 1.2 Velocity field in laminar impinging streams 1.3 Experimental results for the flow field in impinging streams 1.4 Turbulent impinging streams; Chapter 2. Particle Behavior; 2.1 Motion of a single particle in co-axial horizontal impinging streams; 2.2 Experimental results on the behavior of a single particle in co-axial horizontal two-impinging streams; 2.3 Behavior of a single particle in co-axial vertical impinging streams; 2.4 Behavior of particle crowds in impinging streams: Chapter 3. Residence Time of Particles and its

Distribution: 3.1 Theoretical consideration

3.2 Method for experimental measurement of particles' residence time distribution 3.3 Relationships for fitting data; 3.4 Major experimental

results for RTD of particles; 3.5 Remarks; Chapter 4. Hydraulic Resistance of Impinging Stream Devices; 4.1 Theoretical consideration; 4.2 Experimental equipment and procedure; 4.3 Major results from the experimental study; 4.4 Evaluation of power consumption and discussions related to application; Chapter 5. Influence of Impinging Streams on Dispersity of Liquids; 5.1 Statement of the problem; 5.2 Experimental equipment and procedure

5.3 Major results of the investigation 5.4 Concluding remarks; Chapter 6. Impinging Stream Drying; 6.1 Introduction; 6.2 Earlier research and development; 6.3 Circulative impinging stream drying; 6.4 Concluding remarks; Chapter 7. Impinging Stream Absorption; 7.1 Adaptability of impinging streams for gas-liquid reaction systems; 7.2 Earlier investigations; 7.3 Wet desulfurization of flue gas (I) General considerations; 7.4 Wet desulfurization of flue gas (II) Investigations in Israel: 7.5 Wet desulfurization of flue gas (III) Investigations in China 7.6 Design of a device for large gas flow ratesChapter 8. Impinging Streams Combustion and Grinding; 8.1 Models for particles and droplets combustion; 8.2 Intensification of combustion processes due to impinging streams; 8.3 Impinging stream combustors; 8.4 Impinging stream grinding; Part II: Liquid-Continuous Impinging Streams; Chapter 9. Differences Between Properties of Continuous Phases and Classification of Impinging Streams; 9.1 Progress of investigation on liquid-continuous impinging streams

9.2 Differences between properties of continuous phases and their influences on the performance of impinging streams

Sommario/riassunto

The original idea of IS is to send two solid-gas streams to impinge against each other at high velocity, enhancing transfer between phases. IS is classified into two kinds: Gas-continuous impinging streams (GIS) and Liquid-continuous ones (LIS). Impinging Streams describes fundamentals, major properties and application of IS, as a category of novel technologies in chemical engineering. Because of the universality of transfer phenomena, it is receiving widespread attention. This book represents the first book in this area for over 10 years and covers achievements and technologies.

br