1. Record Nr.
Autore
Titolo

Pubbl/distr/stampa

ISBN

Edizione

Descrizione fisica

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia
Nota di contenuto

UNINA9911006623403321
Zeller Andreas
Why programs fail : a guide to systematic debugging / / Andreas Zeller

Burlington, MA, : Morgan Kaufmann
Oxford, : Elsevier Science [distributor], 2009

1-282-16881-9
9786612168819
0-08-092300-3

[2nd ed.]
1 online resource (425 p.)

005.14

Debugging in computer science
Data editing

Inglese

Materiale a stampa

Monografia

Previous ed.: Amsterdam; London: Morgan Kaufmann, 2005.
Includes bibliographical references and index.

Front Cover; Title Page; Copyright Page; Table of Contents; Foreword;
Preface; Chapter 1. How Failures Come to Be; 1.1 My Program Does Not
Work!; 1.2 From Defects to Failures; 1.3 Lost in Time and Space; 1.4
From Failures to Fixes; 1.4.1 Track the Problem; 1.4.2 Reproduce the
Failure; 1.4.3 Automate and Simplify the Test Case; 1.4.4 Find Possible
Infection Origins; 1.4.5 Focus on the Most Likely Origins; 1.4.6 Isolate
the Origin of the Infection; 1.4.7 Correct the Defect; 1.5 Automated
Debugging Techniques; 1.6 Bugs, Faults, or Defects?; 1.7 Concepts;
How to debug a program; 1.8 Tools

1.9 Further ReadingExercises; Chapter 2. Tracking Problems; 2.1 Oh!
All These Problems; 2.2 Reporting Problems; 2.2.1 Problem Facts; 2.2.2
Product Facts; 2.2.3 Querying Facts Automatically; 2.3 Managing
Problems; 2.4 Classifying Problems; 2.4.1 Severity; 2.4.2 Priority; 2.4.3
Identifier; 2.4.4 Comments; 2.4.5 Notification; 2.5 Processing

Problems; 2.6 Managing Problem Tracking; 2.7 Requirements as
Problems; 2.8 Managing Duplicates; 2.9 Relating Problems and Fixes;
2.10 Relating Problems and Tests; 2.11 Concepts; How to obtain the
relevant problem information

How to write an effective problem reportHow to organize the

debugging process; How to track requirements; How to keep problem



tracking simple; How to restore released versions; How to separate
fixes and features; How to relate problems and fixes; How to relate
problems and tests, make a problem report obsolete; 2.12 Tools; 2.13
Further Reading; Exercises; Chapter 3. Making Programs Fail; 3.1
Testing for Debugging; 3.2 Controlling the Program; 3.3 Testing at the
Presentation Layer; 3.3.1 Low-Level Interaction; 3.3.2 System-Level
Interaction; 3.3.3 Higher-Level Interaction

3.3.4 Assessing Test Results3.4 Testing at the Functionality Layer; 3.5
Testing at the Unit Layer; 3.6 Isolating Units; 3.7 Designing for
Debugging; 3.8 Preventing Unknown Problems; 3.9 Concepts; How to
test for debugging; How to automate program execution; How to test

at the presentation layer; How to test at the functionality layer; How to
test at the unit layer; How to isolate a unit; How to design for
debugging; How to prevent unknown problems; 3.10 Tools; 3.11
Further Reading; Exercises; Chapter 4. Reproducing Problems; 4.1 The
First Task in Debugging

4.2 Reproducing the Problem Environment4.3 Reproducing Program
Execution; 4.3.1 Reproducing Data; 4.3.2 Reproducing User Interaction;
4.3.3 Reproducing Communications; 4.3.4 Reproducing Time; 4.3.5
Reproducing Randomness; 4.3.6 Reproducing Operating Environments;
4.3.7 Reproducing Schedules; 4.3.8 Physical Influences; 4.3.9 Effects of
Debugging Tools; 4.4 Reproducing System Interaction; 4.5 Focusing on
Units; 4.5.1 Setting Up a Control Layer; 4.5.2 A Control Example; 4.5.3
Mock Objects; 4.5.4 Controlling More Unit Interaction; 4.6 Reproducing
Crashes; 4.7 Concepts

How to reproduce the problem

Sommario/riassunto This book is proof that debugging has graduated from a black art to a
systematic discipline. It demystifies one of the toughest aspects of
software programming, showing clearly how to discover what caused
software failures, and fix them with minimal muss and fuss. The fully
updated second edition includes 100+ pages of new material, including
new chapters on Verifying Code, Predicting Erors, and Preventing
Errors. Cutting-edge tools such as FindBUGS and AGITAR are explained,
techniques from integrated environments like Jazz.net are highlighted,
and all-new demos with ESC/Java and Spec#



