

|                         |                                                                                                                                      |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1. Record Nr.           | UNISOBSOBE00042738                                                                                                                   |
| Autore                  | Cosenza, Paolo                                                                                                                       |
| Titolo                  | Aristotele e un caso di apofonia / Paolo Cosenza                                                                                     |
| Pubbl/distr/stampa      | Napoli : Giannini, 1997                                                                                                              |
| Descrizione fisica      | 300-313 p. ; 24 cm                                                                                                                   |
|                         |                                                                                                                                      |
| Lingua di pubblicazione | Italiano                                                                                                                             |
| Formato                 | Materiale a stampa                                                                                                                   |
| Livello bibliografico   | Monografia                                                                                                                           |
| Note generali           | Estratto da: Atti dell'Accademia pontaniana, Nuova serie, vol. 45 (1996)                                                             |
|                         |                                                                                                                                      |
| 2. Record Nr.           | UNINA9911004730003321                                                                                                                |
| Autore                  | Avery Paul A                                                                                                                         |
| Titolo                  | Disruptive Emerging Transportation Technologies                                                                                      |
| Pubbl/distr/stampa      | , : American Society of Civil Engineers, , 2022<br>©2022                                                                             |
| ISBN                    | 1-5231-4475-0<br>0-7844-8390-6                                                                                                       |
| Edizione                | [1st ed.]                                                                                                                            |
| Descrizione fisica      | 1 online resource (345 pages)                                                                                                        |
| Altri autori (Persone)  | YangGen<br>TangMing<br>LiuHao<br>KashyapGaurav<br>CoreyJonathan<br>DeyKakan<br>EustaceDeogratias<br>RahmanTawhidur<br>QawasmehBaraah |
| Disciplina              | 629.04                                                                                                                               |
| Soggetti                | Transportation - Technological innovations<br>Traffic engineering - Technological innovations<br>Industry 4.0                        |
|                         |                                                                                                                                      |
| Lingua di pubblicazione | Inglese                                                                                                                              |
| Formato                 | Materiale a stampa                                                                                                                   |

Intro -- Book\_5160\_C000 -- Half Title -- Title Page -- Copyright Page -- Contents -- List of Chapter Authors -- Preface -- Acknowledgments -- Book\_5160\_C001 -- Chapter 1 : Emerging Technologies Impacting the Future of Transportation -- 1.1 Transportation Artificial Intelligence and Machine Learning -- 1.1.1 Introduction to Artificial Intelligence and Machine Learning Techniques for Transportation Application -- 1.1.2 Introduction to Transportation Systems Management and Operation -- 1.1.3 Use Cases for Artificial Intelligence and Machine Learning in Transportation -- 1.1.3.1 Traffic Control -- 1.1.3.2 Decentralized Congestion Mitigation -- 1.1.3.3 Smart Work Zone Management -- 1.1.3.4 Wrong-Way Driver Detection and Mitigation -- 1.1.3.5 Cybersecurity Threat Detection and Mitigation -- 1.1.4 Conclusions of Section 1.1 -- 1.2 Edge Computing, Fog Computing, and Cloud Computing Technologies -- 1.2.1 The Demand on the Existing Transportation Infrastructure -- 1.2.2 Cloud Computing as an Alternative Solution -- 1.2.3 Demand of Edge Computing -- 1.2.4 Overview of Edge Computing Technologies -- 1.2.5 Cloudlet -- 1.2.6 Mobile Edge Computing -- 1.2.7 "Fog" Computing -- 1.2.8 Development of Edge Computing and Associated Technologies -- 1.2.8.1 Edge Computing and Cloud Computing -- 1.2.8.2 Edge Computing and Internet of Things -- 1.2.8.3 Edge Computing and 5G -- 1.2.9 Transportation Scenarios of Applying Edge Computing -- 1.2.10 Building Decentralized ITS Infrastructure -- 1.2.11 Impact of Edge Computing on Connected and Automated Vehicle Roadside Infrastructure Migration -- 1.2.12 Summary of Section 1.2 -- 1.3 Fifth-Generation Innovative Communications Technology -- 1.3.1 Review of 5G Data Services -- 1.3.2 Impact of 5G Data Services on Smart Transportation Infrastructure Enhancement. -- 1.3.2.1 Enhanced Mobile Broadband Service Impact -- 1.3.2.2 Massive Machine-Type Communications Service Impact -- 1.3.2.3 Ultrareliable and Low-Latency Communications Service Impact -- 1.3.3 Impacts of 5G Data Services on Connected and Automated Vehicle Migration -- 1.3.4 Impact of Continuous Evolution on 5G Standards -- 1.3.5 Testing and Demonstration of 5G Cellular V2X -- 1.3.6 Challenges in the United States with 5G Cellular V2X -- 1.3.7 Summary of Section 1.3 -- 1.4 Design and Development of Virtual Reality-Based Driving Simulation -- 1.4.1 Virtual Reality -- 1.4.2 Simulation of the Real World -- 1.4.3 Interactivity and Interface -- 1.4.4 Hardware -- 1.4.5 Software and Scenario Creation -- 1.4.5.1 Planning Stage -- 1.4.5.2 VR Creation Stage -- 1.4.5.3 Data Collection and Analysis -- 1.4.6 Demonstrated Study of Urban Mobility in Driving Simulation -- 1.4.7 Conclusion and Challenges to Section 1.4 -- 1.5 Applied Internet of Things Technologies in Transportation -- 1.5.1 Overviewing of Internet of Things Technologies -- 1.5.2 IoTs Communication Technologies and Protocols -- 1.5.3 Standardization Migration of Internet of Things Technologies -- 1.5.3.1 Internet of Things Sensors -- 1.5.3.2 Internet of Things Supporting Cloud Services and Application Layer Protocols -- 1.5.3.3 Internet of Things Application Domains -- 1.5.3.4 Linking Internet of Things with Other Technologies -- 1.5.3.5 Impact of 5G Migration -- 1.5.3.6 Impact of Edge Computing -- 1.5.4 Transportation Scenarios of Applying Internet of Things -- 1.5.4.1 Transportation Infrastructure Monitoring and Asset Management by

Internet of Things -- 1.5.4.2 Bridge Monitoring by Internet of Things  
-- 1.5.4.3 Smart City and ITS Applications with Internet of Things.  
1.5.4.4 Connected and Automated Vehicles and Internet of Things --  
1.5.5 Conclusion of Section 1.5 -- References -- Book\_5160\_C002 --  
Chapter 2 : Surface Transportation Automation -- 2.1 Concepts of  
Vehicles in Compliance with Society of Automobile Engineers  
Automation Levels -- 2.1.1 Society of Automobile Engineers  
Automation Levels -- 2.1.2 Connected Vehicle -- 2.1.3  
Autonomous Vehicle -- 2.1.4 Cooperative Vehicles with Automation  
-- 2.1.5 Autonomous Shuttle -- 2.1.5.1 Operation Design Domain  
-- 2.1.5.2 Deployment of Autonomous Vehicles/Shuttles -- 2.1.5.3  
Autonomous Shuttle as Micro Transit -- 2.2 Key Supportive Systems  
of Connected Vehicles -- 2.2.1 Safety Systems -- 2.2.2 Mobility  
Systems -- 2.2.3 Environment Systems -- 2.3 Key Design Elements  
of Autonomous Vehicles -- 2.3.1 Perception -- 2.3.2 Navigation --  
2.3.3 Localization -- 2.3.4 Command and Control -- 2.3.5 Health  
Monitoring -- 2.3.6 Behavior Architecture -- 2.3.7 World Model --  
2.3.8 Advantages of Lower Levels of Automated Driving -- 2.3.8.1  
Collision Avoidance and Emergency Braking -- 2.3.8.2 Steering and  
Lane Keeping -- 2.3.8.3 Bus Platooning -- 2.3.8.4 Managed Lanes  
for Automated Shuttles -- 2.4 Distributed Ledger Technologies for  
Connected and Autonomous Vehicle Systems -- 2.4.1 An Introduction  
to Distributed Ledger Technology -- 2.4.2 Use of Distributed Ledger  
Technology in Transportation -- 2.5 Application of Transportation  
Automation Technologies -- 2.5.1 Connected and Automated Vehicle  
Applications -- 2.5.2 Mobility Smart Contracts -- 2.5.3 Cooperative  
Driving Automation -- 2.5.4 Security Considerations -- 2.6 Driving  
Automation Definition and Autonomous Vehicle Laws -- 2.7 Summary  
-- References -- Book\_5160\_C003 -- Chapter 3 : Autonomous Vehicle  
Testing -- 3.1 Introduction.  
3.2 Autonomous Vehicle Technology Testing -- 3.3 Mechanical  
Testing -- 3.3.1 Safety Systems -- 3.3.2 Engine and Drivetrain --  
3.4 Software and Cyber Security Data Testing -- 3.4.1 Driving Model  
-- 3.4.2 Sensor Interfaces -- 3.4.3 Cybersecurity -- 3.4.4 Cyber  
Data Testing -- 3.4.5 System of Software Systems Testing -- 3.5  
Combined System Testing -- 3.6 Complete Vehicle Testing -- 3.7  
System of Systems Testing -- 3.8 Version Testing -- 3.9 Simulated  
versus Real-World Testing -- 3.10 Analysis Frameworks -- 3.11  
Software Simulation -- 3.11.1 Design Simulation -- 3.11.2 Software  
in the Loop Simulation -- 3.11.3 Hardware in the Loop Simulation --  
3.11.4 Driving Simulator -- 3.11.5 Environment Simulation --  
3.11.6 Virtual Reality-Based Simulation -- 3.12 DOT-Approved AV  
Proving Grounds -- 3.13 Testing Facilities -- 3.13.1 Mcity  
(Michigan) -- 3.13.2 Transportation Research Center (Ohio) -- 3.13.3  
Area X.O (Ottawa, Canada) -- 3.13.4 GoMentum Station (California)  
-- 3.13.5 Automated Driving Systems for Rural America (Iowa) --  
3.14 Upcoming Testing Facilities -- 3.14.1 SunTrax (Florida) --  
3.14.2 Curiosity Lab (Georgia) -- 3.15 Current Deployments -- 3.16  
Impact of Policies on AV Testing -- 3.17 Critical AV Testing Issues for  
Future Deployment -- 3.18 Summary -- References --  
Book\_5160\_C004 -- Chapter 4 : Emerging Delivery and Mobility  
Services -- 4.1 Automated Delivery and Logistics -- 4.1.1  
Background -- 4.1.2 Benefits of Automation of Delivery and Logistics  
-- 4.1.3 Automated Delivery and Logistic Applications -- 4.1.3.1  
Last-Mile Transportation -- 4.1.3.2 Automated Freight Ports --  
4.1.3.3 Automated Warehouse Management -- 4.1.3.4 Automated  
Fleet Management -- 4.1.3.5 Automated Reverse Logistics -- 4.1.4  
Technology in Automated Delivery and Logistics.

4.1.4.1 Technologies Used in Freight Delivery -- 4.1.4.2 Technology Used in Warehouse Management -- 4.1.4.3 Future Technologies in Automated Delivery and Logistics -- 4.1.5 Policy Considerations -- 4.1.6 Future Research Directions -- 4.2 Mobility as a Service -- 4.2.1 Role of Mobility as a Service in the Context of Smart Cities -- 4.2.2 Implementation Features of Mobility as a Service -- 4.2.2.1 Core Characteristics of Mobility as a Service -- 4.2.2.2 Mobility as a Service Integration -- 4.2.2.3 Key Elements of Mobility as a Service Ecosystem -- 4.2.3 Review of Mobility as a Service Initiatives around the World -- 4.2.4 Application of Technologies in Mobility as a Service -- 4.2.5 Potential Research Areas -- 4.2.5.1 Research Needs for Understanding Customers -- 4.2.5.2 Research Needs for Business Models -- 4.2.5.3 Research Needs for Policy Implications -- 4.3 Mobility on Demand -- 4.3.1 Importance of Mobility on Demand Services -- 4.3.1.1 Mobility Needs -- 4.3.1.2 Travel Behaviors -- 4.3.1.3 Existing Transportation Services -- 4.3.2 Implementation Features of Different Mobility on Demand Business Models for Passenger and Goods Movement -- 4.3.2.1 Business-to-Consumer -- 4.3.2.2 Business-to-Government -- 4.3.2.3 Business to Business -- 4.3.2.4 Peer-to-Peer Mobility Marketplace -- 4.3.2.5 Peer-to-Peer Delivery Marketplace -- 4.3.3 Technologies Enabling Mobility on Demand Services -- 4.3.4 Contribution of Mobility on Demand in Shared Mobility Ecosystem -- 4.3.5 Future Research Direction -- 4.4 Summary -- References -- Book\_5160\_C005 -- Chapter 5 : Shared Sustainable Mobility -- 5.1 Shared Vehicle Services -- 5.1.1 Background -- 5.1.2 Shared Vehicle Services and Transformed Mobility Patterns -- 5.1.2.1 Ride-Sharing Service Models -- 5.1.2.2 Ride-Sharing Policy Considerations. 5.1.2.3 Carsharing Service Models.

---

#### Sommario/riassunto

This book provides a forward-looking overview of the relevant 4IR technologies and their potential impacts on future disruptive emerging transportation.

---