

1. Record Nr.	UNINA9910710210903321
Autore	Hillhouse David L
Titolo	Effects of high-voltage switching on the EPRI-NBS Coupling Capacitor Voltage Transformer (CCVT) calibration system standard driver // David L. Hillhouse
Pubbl/distr/stampa	Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1983
Descrizione fisica	1 online resource
Collana	NBSIR ; ; 83-2666
Altri autori (Persone)	HillhouseDavid L
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	1983. Contributed record: Metadata reviewed, not verified. Some fields updated by batch processes. Title from PDF title page.
Nota di bibliografia	Includes bibliographical references.

2. Record Nr.

UNINA9910988283903321

Titolo

Proceedings of the International Conference on Future Prospects in Neutrino and Astroparticle Physics : ICFPNAP 2024; 23–24 January; Assam; India / / edited by José W. F. Valle, Sandhya Choubey, Debasish Borah, Rahul Srivastava, Debajyoti Dutta

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025

ISBN

981-9774-41-1

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (XVI, 350 p. 132 illus., 116 illus. in color.)

Collana

Springer Proceedings in Physics, , 1867-4941 ; ; 361

Disciplina

539.7

Soggetti

Nuclear physics
Astrophysics
Cosmology
Nuclear and Particle Physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

This book presents peer-reviewed articles from the International Conference on Future Prospects in Neutrino and Astroparticle Physics (ICFPNAP 2024), held on Jan 23–24 at Assam Don Bosco University, Assam, India. It highlights recent breakthroughs in neutrino and astroparticle physics as well as its future prospects. Neutrino physics is currently one of the most fascinating fields of study, and it is expected that future generations of long and short-baseline neutrino experiments will be able to resolve many important issues such as CP violation, neutrino mass hierarchy, octant degeneracy, the existence of sterile neutrinos, and so on. The discovery of neutrino oscillations has already shown that neutrinos are massive and that we must look beyond the Standard Model (BSM). Many well-motivated BSM frameworks exist to explain the nonzero but tiny neutrino mass, such as the seesaw mechanism, which involves the addition of heavy fermions in the theory. The detection of a lepton number violating process in neutrinoless double beta decay experiments could be a probe for Majorana neutrinos, as anticipated by the seesaw mechanism.

This book emphasizes neutrino physics in general, as well as its connections to dark matter, astrophysics, and cosmology.
