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Sommario/riassunto This popular and successful text was originally written for a one-
semester course in linear algebra at the sophomore undergraduate
level. Consequently, the book deals almost exclusively with real finite
dimensional vector spaces, but in a setting and formulation that
permits easy generalization to abstract vector spaces. A wide selection
of examples of vector spaces and linear transformation is presented to
serve as a testing ground for the theory. In the second edition, a new
chapter on Jordan normal form was added which reappears here in
expanded form as the second goal of this new edition, after the
principal axis theorem. To achieve these goals in one semester it is
necessary to follow a straight path, but this is compensated by a wide
selection of examples and exercises. In addition, the author includes an
introduction to invariant theory to show that linear algebra alone is
incapable of solving these canonical forms problems. This bookis a
compact but mathematically clean introduction to linear algebra with
particular emphasis on topics in abstract algebra, the theory of
differential equations, and group representation theory.



