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These notes were written as a result of my having taught a
"nonmeasure theoretic" course in probability and stochastic processes a
few times at the Weizmann Institute in Israel. | have tried to follow two



principles. The first is to prove things "probabilistically” whenever
possible without recourse to other branches of mathematics and in a
notation that is as "probabilistic" as possible. Thus, for example, the
asymptotics of pn for large n, where P is a stochastic matrix, is
developed in Section V by using passage probabilities and hitting times
rather than, say, pulling in Perron- Frobenius theory or spectral
analysis. Similarly in Section Il the joint normal distribution is studied
through conditional expectation rather than quadratic forms. The
second principle | have tried to follow is to only prove results in their
simple forms and to try to eliminate any minor technical com-

putations from proofs, so as to expose the most important steps. Steps
in proofs or derivations that involve algebra or basic calculus are not
shown; only steps involving, say, the use of independence or a
dominated convergence argument or an assumptjon in a theorem are
displayed. For example, in proving inversion formulas for characteristic
functions | omit steps involving evaluation of basic trigonometric
integrals and display details only where use is made of Fubini's
Theorem or the Dominated Convergence Theorem.



