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"The Lp-Brunn-Minkowski theory for p<1, proposed by Firey and
developed by Lutwak in the 90's, replaces the Minkowski addition of
convex sets by its Lp counterpart, in which the support functions are
added in Lp-norm. Recently, Boroczky, Lutwak, Yang and Zhang have
proposed to extend this theory further to encompass the range. In
particular, they conjectured an Lp-Brunn-Minkowski inequality for
origin-symmetric convex bodies in that range, which constitutes a
strengthening of the classical Brunn-Minkowski inequality. Our main
result confirms this conjecture locally for all (smooth) origin-symmetric
convex bodies in Rn and. In addition, we confirm the local log-Brunn-
Minkowski conjecture (the case ) for small-enough C2-perturbations of
the unit-ball of for g 2, when the dimension n is sufficiently large, as
well as for the cube, which we show is the conjectural extremal case.
For unit-balls of with g, we confirm an analogous result for , a
universal constant. It turns out that the local version of these
conjectures is equivalent to a minimization problem for a spectral-gap
parameter associated with a certain differential operator, introduced by
Hilbert (under different normalization) in his proof of the Brunn-
Minkowski inequality. As applications, we obtain local uniqueness
results in the even Lp-Minkowski problem, as well as improved stability
estimates in the Brunn- Minkowski and anisotropic isoperimetric
inequalities"--



