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This book is a revised and updated version, including a substantial
portion of new material, of our text Perturbation Methods in Applied
Mathematics (Springer- Verlag, 1981). We present the material at a
level that assumes some familiarity with the basics of ordinary and
partial differential equations. Some of the more advanced ideas are
reviewed as needed; therefore this book can serve as a text in either an
advanced undergraduate course or a graduate-level course on the
subject. Perturbation methods, first used by astronomers to predict the
effects of small disturbances on the nominal motions of celestial

bodies, have now become widely used analytical tools in virtually all
branches of science. A problem lends itself to perturbation analysis if it
is "close" to a simpler problem that can be solved exactly. Typically,
this closeness is measured by the occurrence of a small dimensionless
parameter, E, in the governing system (consisting of differential
equations and boundary conditions) so that for E = 0 the resulting
system is exactly solvable. The main mathematical tool used is
asymptotic expansion with respect to a suitable asymptotic sequence of
functions of E. In a regular perturbation problem, a straightforward
procedure leads to a system of differential equations and boundary
conditions for each term in the asymptotic expansion. This system can
be solved recursively, and the accuracy of the result improves as E gets
smaller, for all values of the independent variables throughout the
domain of interest. We discuss regular perturbation problems in the
first chapter.



