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An up-to-date account of the interplay between optimization and
machine learning, accessible to students and researchers in both
communities.The interplay between optimization and machine learning
is one of the most important developments in modern computational
science. Optimization formulations and methods are proving to be vital
in designing algorithms to extract essential knowledge from huge
volumes of data. Machine learning, however, is not simply a consumer
of optimization technology but a rapidly evolving field that is itself



generating new optimization ideas. This book captures the state of the
art of the interaction between optimization and machine learning in a
way that is accessible to researchers in both fields.Optimization
approaches have enjoyed prominence in machine learning because of
their wide applicability and attractive theoretical properties. The
increasing complexity, size, and variety of today's machine learning
models call for the reassessment of existing assumptions. This book
starts the process of reassessment. It describes the resurgence in novel
contexts of established frameworks such as first-order methods,
stochastic approximations, convex relaxations, interior-point methods,
and proximal methods. It also devotes attention to newer themes such
as regularized optimization, robust optimization, gradient and
subgradient methods, splitting techniques, and second-order methods.
Many of these techniques draw inspiration from other fields, including
operations research, theoretical computer science, and subfields of
optimization. The book will enrich the ongoing cross-fertilization
between the machine learning community and these other fields, and
within the broader optimization community.


