1. Record Nr. UNINA9910962873603321 Autore Crichton Robert R Titolo Biological inorganic chemistry: an introduction // Robert R. Crichton with the collaboration of Fre deric Lallemand, Ionna S.M. Psalti and Roberta J Ward Amsterdam;; Oxford,: Elsevier, 2008 Pubbl/distr/stampa **ISBN** 9786611112158 9781281112156 1281112151 9780080556222 0080556221 Edizione [1st ed.] Descrizione fisica 1 online resource (383 p.) Disciplina 572.51 Soggetti Bioinorganic chemistry Chemistry, Inorganic Lingua di pubblicazione Inglese **Formato** Materiale a stampa Monografia Livello bibliografico Description based upon print version of record. Note generali Nota di bibliografia Includes bibliographical references and index. Nota di contenuto Front cover; Biological Inorganic Chemistry An Introduction; Copyright page; Preface; Contents; Chapter 1. An Overview of Metals in Biology; Introduction: Why do we Need Anything Other Than C. H. N and O (Together with Some P And S)?; What are the Essential Metal Ions?; References; Chapter 2. Basic Coordination Chemistry for Biologists; Introduction: Hard and Soft Ligands: Coordination Geometry: Crystal Field Theory and Ligand Field Theory; References; Chapter 3. Biological Ligands for Metal Ions; Introduction; Protein Amino Acid Residues (and

Derivatives) as Ligands An Example of a Non-Protein Ligand: Carbonate and PhosphateEngineering Metal Insertion Into Organic Cofactors; Chelatase: Terminal Step in Tetrapyrrole Metallation; Iron-Sulfur Cluster

Containing Proteins: Iron-Sulfur Cluster Formation: Copper Insertion into Superoxide Dismutase; More Complex Cofactors: MoCo, FeMoCo, P-Clusters, H-Clusters and CuZ; Siderophores; References; Chapter 4. Structural and Molecular Biology for Chemists: Introduction: The Structural Building Blocks of Proteins; Primary, Secondary, Tertiary and **Quaternary Structures of Proteins**

Phosphatases

Secondary and Tertiary Structures of Nucleic AcidsReferences: Chapter 5. An Overview of Intermediary Metabolism and Bioenergetics; Introduction: Redox Reactions in Metabolism: The Central Role of ATP in Metabolism; The Types of Reaction Catalysed by Enzymes of Intermediary Metabolism; An Overview of Intermediary Metabolism: Catabolism: Selected Case Studies: Glycolysis and the Tricarboxylic Acid Cycle: An Overview of Intermediary Metabolism: Anabolism: Bioenergetics: Generation of Phosphoryl Transfer Potential at the Expense of Proton Gradients; References Chapter 6. Methods to Study Metals in Biological SystemsIntroduction; Magnetic Properties; Electron Paramagnetic Resonance (EPR) Spectroscopy; Mossbauer Spectroscopy; NMR Spectroscopy; Electronic and Vibrational Spectroscopies; Circular Dichroism and Magnetic Circular Dichroism; Resonance Raman Spectroscopy; Extended X-Ray Absorption Fine Structure; X-Ray Diffraction; References; Chapter 7. Metal Assimilation Pathways; Introduction; Metal Assimilation in Bacteria; Metal Assimilation in Plants and Fungi; Metal Assimilation in Mammals: References Chapter 8. Transport, Storage and Homeostasis of Metal IonsIntroduction; Metal Storage and Homeostasis in Bacteria; Metal Transport, Storage and Homeostasis in Plants and Fungi; Metal Transport, Storage and Homeostasis in Mammals; References; Chapter 9. Sodium and Potassium-Channels and Pumps; Introduction: -Transport Across Membranes; Sodium Versuspotassium; Sodium

Sommario/riassunto

The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of th

Stabilization of Enolate Anions: The Enolase Super Family

Channels; References; Chapter 10. Magnesium-Phosphate Metabolism and Photoreceptors; Introduction; Magnesium-Dependent Enzymes; Phosphoryl Group Transfer: Kinases; Phosphoryl Group Transfer: