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Geometry used to be the basis of a mathematical education; today it is
not even a standard undergraduate topic. Much as I deplore this
situation, I welcome the opportunity to make a fresh start. Classical
geometry is no longer an adequate basis for mathematics or physics-
both of which are becoming increasingly geometric-and geometry can
no longer be divorced from algebra, topology, and analysis. Students
need a geometry of greater scope, and the fact that there is no room
for geometry in the curriculum un­ til the third or fourth year at least
allows us to assume some mathematical background. What geometry
should be taught? I believe that the geometry of surfaces of constant
curvature is an ideal choice, for the following reasons: 1. It is basically
simple and traditional. We are not forgetting euclidean geometry but
extending it enough to be interesting and useful. The extensions offer
the simplest possible introduction to fundamentals of modem
geometry: curvature, group actions, and covering spaces. 2. The
prerequisites are modest and standard. A little linear algebra (mostly 2
x 2 matrices), calculus as far as hyperbolic functions, ba­ sic group
theory (subgroups and cosets), and basic topology (open, closed, and
compact sets).


