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An optical fiber (or fibre) is a glass or plastic fiber that carries light
along its length. Fiber optics is the overlap of applied science and
engineering concerned with the design and application of optical fibers.
Optical fibers are widely used in fiber-optic communications, which
permits transmission over longer distances and at higher data rates (a.
k.a "bandwidth"), than other forms of communications. Fibers are used
instead of metal wires because signals travel along them with less loss,
and they are immune to electromagnetic interference. Fibers are also
used for illumination, and in bundles can be used to carry images,
allowing viewing in tight spaces. Specially designed fibers are used for
a variety of other applications, including as sensors and fiber lasers.
This new book presents leading research from around the world.



