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The subject of space-filling curves has fascinated mathematicians for
over a century and has intrigued many generations of students of
mathematics. Working in this area is like skating on the edge of reason.
Unfortunately, no comprehensive treatment has ever been attempted
other than the gallant effort by W. Sierpiriski in 1912. At that time, the
subject was still in its infancy and the most interesting and perplexing
results were still to come. Besides, Sierpiriski's paper was written in
Polish and published in a journal that is not readily accessible
(Sierpiriski [2]). Most of the early literature on the subject is in French,
German, and Polish, providing an additional raison d'etre for a
comprehensive treatment in English. While there was, understandably,
some intensive research activity on this subject around the turn of the
century, contributions have, nevertheless, continued up to the present
and there is no end in sight, indicating that the subject is still very
much alive. Therecent interest in fractals has refocused interest on
space­ filling curves, and the study of fractals has thrown some new
light on this small but venerable part of mathematics. This monograph
is neither a textbook nor an encyclopedic treatment of the subject nor a
historical account, but it is a little of each. While it may lend structure
to a seminar or pro-seminar, or be useful as a supplement in a course
on topology or mathematical analysis, it is primarily intended for self-
study by the aficionados of classical analysis.




