1. Record Nr.
Autore
Titolo

Pubbl/distr/stampa
ISBN

Edizione

Descrizione fisica

Classificazione

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia
Nota di contenuto

UNINA9910954492503321

Kak Avinash C

Scripting with objects : a comparative presentation of object-oriented
scripting with Perl and Python // Avinash C. Kak

Hoboken, N.J., : Wiley-Interscience, c2008

9780470255780
0470255781

[1st ed.]
XXxiv, 1279 p. : ill

007.64
005.1/17

005.1/17

Object-oriented programming (Computer science)
Perl (Computer program language)

Python (Computer program language)

Scripting languages (Computer science)

Inglese

Materiale a stampa

Monografia

Includes bibliographical references and index
Includes bibliographical references and index.

Intro -- Scripting with Objects: A Comparative Presentation of Object-
Oriented Scripting With Perl and Python -- Contents -- Preface --
Acknowledgments -- 1 Multilanguage View of Application Development
and OO Scripting -- 1.1 Scripting Languages Versus Systems
Programming Languages -- 1.2 Organization of this Book -- 1.3

Credits and Suggestions for Further Reading -- 2 Perl - A Review of the
Basics -- 2.1 Scalar Values in Perl -- 2.1.1 Numbers -- 2.1.2 Strings --
2.2 Perl's Variables: Scalars, Arrays, and Hashes -- 2.2.1 Scalar -- 2.2.2
Array -- 2.2.3 Hash -- 2.3 Lexical Scope, Lexical Variables, and Global
Variables -- 2.3.1 Lexical Variables -- 2.3.2 Package Variables -- 2.4
Displaying Arrays -- 2.5 Displaying Hashes -- 2.6 Terminal and File

I/O -- 2.6.1 Terminal 1/O -- 2.6.2 File /0 -- 2.6.2.1 1/O for Text Files

-- 2.6.2.2 1/O for Binary Files -- 2.7 Functions, Subroutines, and
Functions Used as Operators -- 2.7.1 Using a Function as an Operator
-- 2.7.2 User-Defined Functions -- 2.7.3 Passing Arguments to
Functions -- 2.7.4 Functions Can be Called with Keyword Arguments

-- 2.7.5 Default Values for Function Arguments -- 2.8 What Is

Returned by Evaluation Depends on Context -- 2.9 Conditional

Evaluation and Loop Control Structures -- 2.9.1 Controlling an Outer
Loop from an Inner Loop -- 2.9.2 When Is a Conditional True or False?
-- 2.9.3 Complex Conditionals -- 2.10 Functions Supplied with Here-
Doc Arguments -- 2.11 Modules and Packages in Perl -- 2.11.1
Creating Your Own Module -- 2.11.2 Importing Names from a Module
-- 2.11.3 "Nesting" of Modules -- 2.11.4 The Autoloading Feature --
2.11.5 Package Constructors and Destructors -- 2.12 Temporarily
Localizing a Global Variable -- 2.13 Typeglobs for Global Names --
2.13.1 Creating Global Variables by Direct Assignments to Typeglob
Slots -- 2.14 The eval Operator.

2.15 grep() and map() Functions -- 2.16 Interacting with the Directory
Structure -- 2.16.1 Directory Handles -- 2.16.2 File Tests -- 2.16.3
Taking Advantage of Shell's Globbing -- 2.16.4 Scanning a Directory
Tree -- 2.17 Launching Processes -- 2.17.1 Launching a Child Process
with system() -- 2.17.2 Launching a Child Process with Backticks --
2.17.3 exec() for Transferring Control to a Process -- 2.17.4
Launching a Child Process with fork() -- 2.17.5 open() for Interprocess
Communications -- 2.18 Sending and Trapping Signals -- 2.19 Credits
and Suggestions for Further Reading -- 2.20 Homework -- 3 Python -
A Review of the Basics -- 3.1 Language Model: Perl versus Python --
3.2 Numbers -- 3.3 Python Containers: Sequences -- 3.3.1 Strings --
3.3.2 Tuples -- 3.3.3 Lists -- 3.3.4 Xrange Sequences -- 3.4 Python
Containers: Dictionaries -- 3.5 Built-in Types as Classes -- 3.5.1 String
Type as a Class -- 3.5.2 Numeric Types as Classes -- 3.6 Subclassing
the Built-in Types -- 3.6.1 Subclassing the String Type -- 3.6.2
Subclassing the Integer Type -- 3.7 Terminal and File /0O -- 3.7.1
Terminal I/O -- 3.7.2 File I/O -- 3.7.2.1 1/O for Text Files -- 3.7.2.2

I/O for Binary Files -- 3.8 User-defined Functions -- 3.8.1 A Function

Is an Object -- 3.8.2 The Object Returned by a Function Call -- 3.8.3
Default Arguments for Function Parameters -- 3.8.4 Functions Can Be
Called with Arbitrary Number of Arguments -- 3.8.5 Functions Can Be
Called with Keyword Arguments -- 3.8.6 Anonymous Functions with
Lambda Expressions -- 3.8.7 Closures -- 3.9 Control Structures --
3.9.1 When Is a Conditional True or False? -- 3.9.2 Complex
Conditionals -- 3.10 Modules in Python -- 3.10.1 Importing a Module

-- 3.10.2 Importing Specific Names from a Module -- 3.11 Scoping
Rules, Namespaces, and Name Resolution -- 3.11.1 Nested
Namespaces -- 3.11.2 Name Resolution for Imported Modules.

3.11.3 What about the Names Imported with from...import Syntax? --
3.11.4 Deeply Nested Namespaces and the global Declaration -- 3.11.5
Python Is Lexically Scoped -- 3.12 The eval() Function -- 3.13 map()
and filterQ Functions -- 3.14 Interacting with the Directory Structure --
3.14.1 File Tests -- 3.14.2 Taking Advantage of Shell's Globbing --
3.14.3 Scanning a Directory Tree -- 3.15 Launching Processes --
3.15.1 Launching a Child Process with os.system() -- 3.15.2 os.exec
Functions for Launching External Commands -- 3.15.3 Launching a
Child Process with os.fork() -- 3.15.4 os.popen() for Interprocess
Communication -- 3.16 Sending and Trapping Signals -- 3.17 Credits
and Suggestions for Further Reading -- 3.18 Homework -- 4 Regular
Expressions for String Processing -- 4.1 What is an Input String? -- 4.2
Simple Substring Search -- 4.3 What is Meant by a Match between a
Regex and an Input String? -- 4.4 Regex Matching at Line and Word
Boundaries -- 4.5 Character Classes for Regex Matching -- 4.6
Specifying Alternatives in a Regex -- 4.7 Subexpression of a Regex --
4.8 Extracting Substrings from an Input String -- 4.8.1 Other Uses of
Parentheses in Regular Expressions -- 4.9 Abbreviated Notation for
Character Classes -- 4.10 Quantifier Metacharacters -- 4.10.1
Greediness of Quantifiers -- 4.10.2 The Sometimes Unintended

Consequence of Greedy Quantifiers -- 4.10.3 Nongreedy Quantifiers --
4.10.4 Perl and Python Example Scripts with Quantifiers -- 4.11 Match
Modifiers -- 4.11.1 Case-Insensitive Matching -- 4.11.2 Going Global

-- 4.11.3 Input Strings Consisting of Multiple Lines -- 4.11.4 Multiline
Regular Expressions -- 4.11.5 Other Match Modifiers -- 4.12 Splitting
Strings -- 4.12.1 Joining Strings -- 4.13 Regexes for Search and
Replace Operations -- 4.14 Credits and Suggestions for Further
Reading -- 4.15 Homework -- 5 References in Perl.

5.1 Referencing and Dereferencing Operators (Summary) -- 5.2
Referencing and Dereferencing a Scalar -- 5.3 Referencing and
Dereferencing a Named Array -- 5.4 Referencing and Dereferencing an
Anonymous Array -- 5.5 Referencing and Dereferencing a Named Hash
-- 5.6 Referencing and Dereferencing an Anonymous Hash -- 5.7
Referencing and Dereferencing A Named Subroutine -- 5.8 Referencing
and Dereferencing An Anonymous Subroutine -- 5.9 Subroutines
Returning References to Subroutines -- 5.10 Closures -- 5.11

Enforcing Privacy in Modules -- 5.12 References to Typeglobs -- 5.13
The ref() Function -- 5.14 Symbolic References -- 5.14.1 Symbolic
References to Subroutines -- 5.15 Credits and Suggestions for Further
Reading -- 5.16 Homework -- 6 The Notion of a Class in Perl -- 6.1
Defining a Class in Perl -- 6.1.1 Blessing an Object into a Package --
6.1.2 Providing a Class with a Constructor -- 6.1.3 Data Hiding and
Data Access Issues -- 6.1.4 Packaging a Class into a Module -- 6.2
Constructors Can Be Called with Keyword Arguments -- 6.3 Default
Values for Instance Variables -- 6.4 Instance Object Destruction --
6.4.1 Destructors and the Problem of Circular References -- 6.5
Controlling the Interaction between DESTROY() and AUTOLOAD() --
6.6 Class Data and Methods -- 6.7 Reblessing Objects -- 6.8 Operator
Overloading and Class Customization -- 6.9 Credits and Suggestions
for Further Reading -- 6.10 Homework -- 7 The Notion of a Class in
Python -- 7.1 Defining a Class in Python -- 7.1.1 Constructors and
System-Supplied Attributes -- 7.1.2 Class Definition: The Syntax -- 7.2
New-Style Versus Classic Classes in Python -- 7.3 Defining Methods --
7.3.1 A Method Can Be Defined Outside a Class -- 7.3.2 Bound and
Unbound Methods -- 7.3.3 Using __getattr__ () as a Catch-All for
Nonexistent Methods -- 7.3.4 __getattr () versus __getattribute__ ().
7.4 Destruction of Instance Objects -- 7.5 Encapsulation Issues for
Classes -- 7.6 Defining Class Variables, Static Methods, and Class
Methods -- 7.6.1 An Instance Variable Hides a Class Variable of the
Same Name -- 7.7 Private Data Attributes and Methods -- 7.8 Defining
a Class with Slots -- 7.9 Descriptor Classes in Python -- 7.10 Operator
Overloading and Class Customization -- 7.11 Credits and Suggestions
for Further Reading -- 7.12 Homework -- 8 Inheritance and
Polymorphism in Perl -- 8.1 Inheritance in Mainstream OO -- 8.2
Inheritance and Polymorphism in Perl: Comparison with Mainstream OO
Languages -- 8.3 The ISA Array for Specifying the Parents of a Class --
8.4 An Example of Class Derivation in Perl -- 8.5 A Small
Demonstration of Polymorphism in Perl OO -- 8.6 How a Derived-Class
Method Calls on a Base-Class Method -- 8.7 The UNIVERSAL Class --
8.7.1 Adding Functionality to the UNIVERSAL class -- 8.8 How a Method
is Searched For in a Class Hierarchy -- 8.9 Inherited Methods Behave As
If Locally Defined -- 8.10 Destruction of Derived-Class Instances --
8.11 Diamond Inheritance -- 8.12 On the Inheritability of a Class --

8.13 Local Variables and Subroutines in Derived Classes -- 8.14
Operator Overloading and Inheritance -- 8.15 Credits and Suggestions
for Further Reading -- 8.16 Homework -- 9 Inheritance and
Polymorphism in Python -- 9.1 Extending a Class in Python -- 9.2
Extending a Base-Class Method in a Single-Inheritance Chain -- 9.3 A

Sommario/riassunto

Simple Demonstration of Polymorphism in Python OO -- 9.4
Destruction of Derived-Class Instances in Single-Inheritance Chains --
9.5 The Root Class object -- 9.6 Subclassing from the Built-In Types --
9.6.1 Subclassing the Built-In dict -- 9.6.2 Subclassing the Built-In list
-- 9.6.3 Subclassing the Built-In tuple -- 9.7 On Overriding __new__ ()
and __init_ () -- 9.8 Multiple Inheritance.

9.8.1 Method Resolution Order for Classic Classes.

Object-Oriented scripting with Perl and Python Scripting languages are
becoming increasingly important for software development. These
higher-level languages, with their built-in easy-to-use data structures
are convenient for programmers to use as "glue" languages for
assembling multi-language applications and for quick prototyping of
software architectures. Scripting languages are also used extensively in
Web-based applications. Based on the same overall philosophy that
made Programming with Objects such a wide success, Scripting with
Objects takes a novel dual-language approach to learning advanced
scripting with Perl and Python, the dominant languages of the genre.
This method of comparing basic syntax and writing application-level
scripts is designed to give readers a more comprehensive and
expansive perspective on the subject. Beginning with an overview of the
importance of scripting languages-and how they differ from

mainstream systems programming languages-the book explores:
Regular expressions for string processing The notion of a class in Perl
and Python Inheritance and polymorphism in Perl and Python Handling
exceptions Abstract classes and methods in Perl and Python Weak
references for memory management Scripting for graphical user
interfaces Multithreaded scripting Scripting for network programming
Interacting with databases Processing XML with Perl and Python This
book serves as an excellent textbook for a one-semester
undergraduate course on advanced scripting in which the students
have some prior experience using Perl and Python, or for a two-
semester course for students who will be experiencing scripting for the
first time. Scripting with Objects is also an ideal resource for industry
professionals who are making the transition from Perl to Python, or vice
versa.

