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Object-Oriented scripting with Perl and Python Scripting languages are
becoming increasingly important for software development. These
higher-level languages, with their built-in easy-to-use data structures
are convenient for programmers to use as "glue" languages for
assembling multi-language applications and for quick prototyping of
software architectures. Scripting languages are also used extensively in
Web-based applications. Based on the same overall philosophy that
made Programming with Objects such a wide success, Scripting with
Objects takes a novel dual-language approach to learning advanced
scripting with Perl and Python, the dominant languages of the genre.
This method of comparing basic syntax and writing application-level
scripts is designed to give readers a more comprehensive and
expansive perspective on the subject. Beginning with an overview of the
importance of scripting languages-and how they differ from

mainstream systems programming languages-the book explores:
Regular expressions for string processing The notion of a class in Perl
and Python Inheritance and polymorphism in Perl and Python Handling
exceptions Abstract classes and methods in Perl and Python Weak
references for memory management Scripting for graphical user
interfaces Multithreaded scripting Scripting for network programming
Interacting with databases Processing XML with Perl and Python This
book serves as an excellent textbook for a one-semester
undergraduate course on advanced scripting in which the students
have some prior experience using Perl and Python, or for a two-
semester course for students who will be experiencing scripting for the
first time. Scripting with Objects is also an ideal resource for industry
professionals who are making the transition from Perl to Python, or vice
versa.



