

1. Record Nr.	UNINA9910481853703321
Autore	Anon
Titolo	Novum Jesu Christi Testamentum interprete Sebastiano Castellione. Ex postrema ejusdem castigatione. Addita sunt loca parallela S. Scripturæ quæ Stephanus Curcellæus suæ Græcæ editioni adjunxit [[electronic resource]]
Pubbl/distr/stampa	Amsterdam, : Davidem Ruarum, 1681
Descrizione fisica	Online resource (725, [2] p, 8°)
Lingua di pubblicazione	Latino
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	Reproduction of original in Koninklijke Bibliotheek, Nationale bibliotheek van Nederland.
2. Record Nr.	UNINA9910917195603321
Autore	Srivastav Saurabh Kumar
Titolo	Quantized Heat Flow as a Probe of Thermal Equilibration and Edge Structures of Quantum Hall Phases in Graphene / / by Saurabh Kumar Srivastav
Pubbl/distr/stampa	Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
ISBN	9783031670510 3031670515
Edizione	[1st ed. 2024.]
Descrizione fisica	1 online resource (344 pages)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5061
Disciplina	530.12
Soggetti	Quantum physics Condensed matter Quantum Physics Condensed Matter Physics Two-dimensional Materials
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia

Nota di contenuto

Electronic properties of graphene -- Electron in Magnetic field
Quantum Hall effect -- Device Fabrication and Measurement Setup --
Universal quantization of thermal conductance in graphene --
Vanishing thermal equilibration for hole conjugate fractional quantum Hall states in graphene.

Sommario/riassunto

This book describes the quantized thermal conductance measurements of integer and several fractional quantum Hall (QH) states realized in graphene devices. Although the electrical conductance quantization of the QH effect in graphene was demonstrated in 2005, a heat flow study of QH states needed to be included. This becomes particularly essential for the hole-conjugate fractional QH phases, where counterpropagating edge modes lead to complex transport behavior. The experimental results reported in this thesis are the first set of experiments done for the quantized heat flow in graphene devices since the first mechanical isolation of graphene flakes. The book devotes two detailed introductory chapters to the electronic properties of the graphene and its bilayer and trilayer parts at zero magnetic fields, and to the essential physics of the integer and fractional quantum Hall (FQH) states, the topological order of FQH phases and the experiments that can detect them. The book has a dedicated chapter for the details of the device fabrication and thermal conductance measurement technique. The rest of the chapters are dedicated to the systematic and detailed documentation of the new experimental findings of quantized heat flow in quantum Hall phases in graphene.