1.	Record Nr.	UNINA9910890192403321
	Autore	Guo Tianyi
	Titolo	Low Energy Photon Detection / / by Tianyi Guo
	Pubbl/distr/stampa	Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
	ISBN	3-031-71544-6
	Edizione	[1st ed. 2024.]
	Descrizione fisica	1 online resource (58 pages)
	Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5061
	Disciplina	621.381045
	Soggetti	Optoelectronic devices
		Nanophotonics
		Plasmonics
		Materials
		Photonics
		Measurement
		Measuring instruments
		Optical engineering
		Nanoelectromechanical systems
		Optoelectronic Devices
		Nanophotonics and Plasmonics
		Photonic Devices
		Measurement Science and Instrumentation
		Photonics and Optical Engineering
	Lingua di pubblicazione	Inglese
	Formato	Materiale a stampa
	Livello bibliografico	Monografia
	Nota di contenuto	Chapter 1: Introduction Chapter 2: Dynamically Tunable Long Wave Infared Detection Chapter 3: Frequency Modulation Based Infrared Detection Chapter 4: Dense Pixel Array Integration Chapter 5: Conclusion and Future.
	Sommario/riassunto	This thesis showcases innovative new approaches aimed at advancing the next generation of long wave infrared (LWIR) light detectors and cameras. Detecting LWIR light at room temperature has posed a

persistent challenge due to the low energy of photons. The pursuit of an affordable, high-performance LWIR camera capable of room temperature detection has spanned several decades. The two approaches detailed within are designed to offer high detectivity, swift response times, and room temperature operation. The first involves harnessing the Dirac plasmon and the Seebeck effect in graphene to create a photo-thermoelectric detector. The second entails the use of an oscillating circuit integrated with phase change materials and the modulation of frequency induced by infrared illumination to achieve LWIR detection. Finally, the graphene-based detectors are integrated with readout circuits to enable the development of a dense pixel focal plane which has strong potential for commercialization. The journey from novel material to device to functional camera presented here is essential reading for researchers in the field of photon detection.