
UNINA99108869880033211. Record Nr.

Titolo Zephyr RTOS Embedded C Programming : Using Embedded RTOS POSIX
API / / by Andrew Eliasz

Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2024

ISBN 9798868801075

Descrizione fisica 1 online resource (689 pages)

Disciplina 005.13

Soggetti Programming languages (Electronic computers)
Internet of things
Programming Language
Internet of Things

Lingua di pubblicazione Inglese

Formato

Edizione [1st ed. 2024.]

Livello bibliografico

Nota di contenuto

Sommario/riassunto

1. Introduction -- 2. A Review of RTOS Fundamentals -- 3. Zephyr
RTOS Application Development Environments and Zephyr Application
Building Principles -- 4. Zephyr RTOS Multithreading -- 5. Message
Queues, Pipes, Mailboxes and Workqueues -- 6. Using Filesystems in
Zephyr Applications -- 7. Developing Zephyr BLE Applications -- 8.
Zephyr RTOS and Ethernet, WiFi, and TCP/IP -- 9. Understanding and
Working with the Device Tree, in general, and SPI and I2C in particular
-- 10. Building Zephyr RTOS Applications Using Renode -- 11.
Understanding and Using the Zephyr ZBus in Application Development
-- 12. Zephyr Wi-Fi.
These days the term Real-Time Operating System (RTOS) is used when
referring to an operating system designed for use in embedded
microprocessors or controllers. The “Real Time” part refers to the
ability to implement applications that can rapidly responding to
external events in a deterministic and predictable manner. RTOS-based
applications have to meet strict deadline constraints while meeting the
requirements of the application. One way of ensuring that urgent
operations are handled reliably is to set task priorities on each task and
to assign higher priorities to those tasks that need to respond in a
more timely manner. Another feature of real-time applications is the

Autore Eliasz Andrew

Materiale a stampa

Monografia



careful design and implementation of the communication and
synchronization between the various tasks. The Zephyr RTOS was
developed by Wind River Systems, and subsequently open sourced. Its
design and implementation are oriented towards the development of
time critical IoT (Internet of Things) and IIoT (Industrial Internet of
Things) applications, and, consequently it has a rich feature set for
building both wireless and wired networking applications. However,
with a rich feature set comes a fairly steep learning curve. This book
covers the foundations of programming embedded systems
applications using Zephyr's Kernel services. After introducing the
Zephyr architecture as well as the Zephyr build and configuration
processes, the book will focus on multi-tasking and inter-process
communication using the Zephyr Kernel Services API. By analogy with
embedded Linux programming books, this book will be akin a Linux
course that focuses on application development using the Posix API. In
this case, however, it will be the Zephyr Kernel Services API that will be
the API being used as well as the Posix API features supported by
Zephyr. What You’ll learn An Overview of the Cortex-M Architecture.
Advanced data structures and algorithms programming (linked lists,
circular buffers and lists). How to build Zephyr Applications, including
setting up a Command Line Zephyr Development Environment on
Linux. Task scheduling and pre-emption patterns used in Real Time
Operating Systems. Scheduling, Interrupts and Synchronization,
including threads, scheduling, and system threads. Overview of
Symmetric Multiprocessing (SMP) and Zephyr support for SMP. Memory
management, including memory heaps, memory slabs, and memory
pools. Who This Book Is For Embedded Systems programmers, IoT and
IIoT developers, researchers, BLE application developers (Industrial
Control Systems, Smart Sensors, Medical Devices, Smart Watches,
Manufacturing, Robotics). Also of use to undergraduate and masters in
computer science and digital electronics courses.


