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A computational perspective on partial order and lattice theory,
focusing on algorithms and their applications   This book provides a
uniform treatment of the theory and applications of lattice theory. The
applications covered include tracking dependency in distributed
systems, combinatorics, detecting global predicates in distributed
systems, set families, and integer partitions. The book presents
algorithmic proofs of theorems whenever possible. These proofs are
written in the calculational style advocated by Dijkstra, with arguments
explicitly spelled out step by step. The author's intent


