Record Nr.	UNINA9910869156403321
Autore	Franco Leonardo
Titolo	Computational Science – ICCS 2024 : 24th International Conference, Malaga, Spain, July 2–4, 2024, Proceedings, Part I / / edited by Leonardo Franco, Clélia de Mulatier, Maciej Paszynski, Valeria V. Krzhizhanovskaya, Jack J. Dongarra, Peter M. A. Sloot
Pubbl/distr/stampa	Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
ISBN	3-031-63749-6
Edizione	[1st ed. 2024.]
Descrizione fisica	1 online resource (402 pages)
Collana	Lecture Notes in Computer Science, , 1611-3349 ; ; 14832
Altri autori (Persone)	de MulatierClélia PaszynskiMaciej KrzhizhanovskayaValeria V DongarraJack J SlootPeter M. A
Disciplina	004.0151
Soggetti	Computer science Artificial intelligence Computer engineering Computer networks Software engineering Computer science - Mathematics Theory of Computation Artificial Intelligence Computer Engineering and Networks Software Engineering Mathematics of Computing
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di contenuto	Intro Preface Organization Contents - Part I ICCS 2024 Main Track Full Papers Effects of Wind on Forward and Turning Flight of Flying Cars Using Computational Fluid Dynamics 1 Introduction 2 Numerical Approach 2.1 Fundamental Equation of Fluid 2.2 Fundamental Equation of Rigid Body 2.3 Moving Computational Domain Approach 2.4 Multi-axis Sliding Mesh

Approach -- 3 Simulation Summary -- 3.1 Flight Simulation Conditions -- 3.2 Computation Model -- 3.3 Calculation Conditions -- 3.4 Attitude Control -- 4 Simulation Results -- 4.1 Forward Flight Simulation -- 4.2 Acceleration Turning Flight -- 4.3 Constant Velocity Turning Flight -- 5 Conclusions -- References -- DP-PINN: A Dual-Phase Training Scheme for Improving the Performance of Physics-Informed Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Overview of Standard PINN and Motivation of DP-PINN -- 3.2 DP-PINN -- 3.3 Sampling Methods -- 4 Results -- 4.1 Allen-Cahn Equation -- 4.2 1D Viscous Burger's Equation -- 5 Conclusion and Future Works -- References -- Operator Entanglement Growth Quantifies Complexity of Cellular Automata -- 1 Introduction -- 2 A Matrix Product Operator for Elementary Cellular Automata -- 3 Operator Space Entanglement Entropy Growth -- 3.1 Type I Rules: Quick Convergence to Constant Values -- 3.2 Type II Rules: Long Transients and Information Transfer -- 3.3 Type III Rules: Chaotic CAs -- 3.4 Type IV Rules: Domain Walls, Lifeforms and Complexity -- 3.5 Parallel with Quantum Systems -- 4 Conclusion -- References -- HarVI: Real-Time Intervention Planning for Coronary Artery Disease Using Machine Learning -- 1 Introduction -- 2 Methods -- 2.1 Personalized Hemodynamic Analysis Using Reduced-Order Models -- 2.2 Integrating with Harvis and Editing 3D Stenosis Geometry. 2.3 Establishing a Real-Time Prediction Model of Post-intervention Hemodynamics Using Machine Learning -- 2.4 Experimental Protocol to Establish and Validate HarVI -- 3 Results and Discussion -- 3.1 Few Samples Are Needed to Capture Post-intervention Fractional Flow Reserve Accurately -- 3.2 Post-intervention Fractional Flow Reserve Predicted Using HarVI Agrees with 1D Ground-Truths -- 3.3 End-to-End Turnaround Time to Enable Intervention Planning Within One Working Day -- 4 Conclusion -- References -- Krylov Solvers for Interior Point Methods with Applications in Radiation Therapy and Support Vector Machines -- 1 Introduction -- 2 Background -- 2.1 Interior Point Methods -- 2.2 Optimization Problems in Radiation Therapy and SVMs -- 3 Prototype Interior Point Method -- 3.1 KKT System Formulation -- 3.2 IPM Implementation -- 4 Experimental Setup -- 5 Results -- 5.1 Krylov Solver Convergence -- 5.2 IPM Solver Convergence -- 5.3 Numerical Stability and Conditioning of KKT System -- 5.4 Performance Analysis -- 6 Related Work -- 7 Conclusions and Future Work -- References -- From Fine-Grained to Refined: APT Malware Knowledge Graph Construction and Attribution Analysis Driven by Multi-stage Graph Computation -- 1 Introduction --2 Related Work -- 3 Proposed Method -- 3.1 APT Malware Ontology Mode -- 3.2 Multistage Graph Clustering and Graph Representation Optimization -- 3.3 Threat Actor Groupal Attribution Based on Meta-Path Graph Embedding -- 4 Evaluation and Discussion -- 4.1 Discussion 1: Whether the Key Information of APT Malware Knowledge Graph Attribution Is Reduced After Refining -- 4.2 Discussion 2: What Is the Effect of Refined APT Malware Knowledge Graph Attribution Analysis -- 4.3 Discussion 3: How Meaningful Is Our Research in Comparison with Similar Studies in the Field of APT Malware Analysis --5 Conclusion -- References. Flow Field Analysis in Vortex Ring State Using Small Diameter Rotor by Descent Simulation -- 1 Introduction -- 2 Numerical Approach --2.1 Governing Equations -- 2.2 Unstructured Moving-Grid Finite-Volume Method -- 2.3 Moving Computational Domain Method -- 2.4 Hovering Induced Velocity -- 3 Descent Simulation of Rotor -- 3.1 Computational Mesh -- 3.2 Computational Mesh -- 4 Numerical Simulation Results -- 4.1 Simple Vertical Descent -- 4.2 Oblique

Descent Simulation (Angle of Descent 26.6°) -- 5 Conclusions --References -- Toward Real-Time Solar Content-Based Image Retrieval -- 1 Introduction -- 2 Related Works -- 3 Proposed Method for Solar Image Hashing -- 3.1 Calculating Solar Image Descriptor -- 3.2 Hash Generation -- 3.3 Retrieval -- 4 Experimental Results -- 5 Conclusions -- References -- Velocity Temporal Shape Affects Simulated Flow in Left Coronary Arteries -- 1 Introduction -- 2 Methods -- 2.1 Quantifying and Varying Temporal Waveform Shape -- 2.2 1D Simulation Approach -- 2.3 3D Simulation Approach -- 2.4 Image-Derived Coronary Geometries -- 2.5 Numerical Experimental Protocol -- 2.6 Calculating Hemodynamic Metrics -- 2.7 Statistical Tests -- 3 Results -- 3.1 1D Quantification of Wall Shear Stress -- 3.2 A Subset of Perturbed Points of Interest Resulted in Significant 3D Simulation Changes -- 3.3 Strong Agreement Between 1D and 3D Wall Shear Stress -- 3.4 Correlation Between Metrics and Inlet Waveform Metrics -- 4 Discussion -- 4.1 1D Linear Changes in Wall Shear Stress -- 4.2 Three Points of Interest Cause 3D Statistically Significant OSI Differences -- 4.3 Inlet Waveforms Are Not Enough to Predict All Metrics -- 4.4 Limitations -- 4.5 Clinical and Research Implications --5 Conclusion -- References -- Simulating, Visualizing and Playing with de Sitter and Anti de Sitter Spacetime -- 1 Introduction -- 2 Background -- 3 Preliminaries. 4 Simulation of the Anti-de Sitter Spacetime -- 5 Simulation of the de Sitter Spacetime -- 6 Visualizations and Insights -- 7 Further Work --References -- Enhancing the Realism of Wildfire Simulation Using Composite Bézier Curves -- 1 Introduction -- 2 Forest Fire Spread Modelling -- 3 Methodology -- 3.1 Composite Bézier Curves -- 4 Experimental Study and Results -- 4.1 Ideal Cases -- 4.2 Real Case --5 Conclusions -- References -- Learning Mesh Geometry Prediction --1 Introduction -- 2 Related Work -- 3 Compression Method -- 3.1 Input Features -- 3.2 Optimization -- 3.3 Uncertainty Prediction -- 4 Experimental Results -- 5 Conclusions -- References -- Data-Efficient Knowledge Distillation with Teacher Assistant-Based Dynamic Objective Alignment -- 1 Introduction -- 2 Related Work -- 3 Methodology --3.1 Preliminary -- 3.2 Data Selection (DS) -- 3.3 Teacher Assistant (TA) -- 3.4 Dynamic Objective Alignment (DOA) -- 3.5 Total Loss -- 4 Experiments -- 4.1 Datasets -- 4.2 Baselines -- 4.3 Implementation Details -- 4.4 Evaluation Metrics -- 4.5 Performance Comparison --4.6 Ablation Study -- 4.7 Model Analysis -- 5 Conclusion --References -- MPI4AII: Universal Binding Generation for MPI Parallel Programming -- 1 Introduction -- 2 Related Work -- 3 MPI4All -- 3.1 Parser -- 3.2 Generator -- 4 Experimental Evaluation -- 4.1 Java -- 4.2 Go -- 5 Conclusions -- References -- Time Series Predictions Based on PCA and LSTM Networks: A Framework for Predicting Brownian Rotary Diffusion of Cellulose Nanofibrils -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Dimensionality Reduction -- 3.2 Long Short-Term Memory -- 4 Input Data and Experiment Description -- 4.1 LSTM Architecture -- 5 Results -- 6 Discussion and Conclusion --References -- Cost-Effective Defense Timing Selection for Moving Target Defense in Satellite Computing Systems -- 1 Introduction. 2 Related Work -- 2.1 Time-Driven MTD -- 2.2 Event-Driven MTD --2.3 Hybrid-Driven MTD -- 3 System and Threat Model -- 4 Markov Game -- 5 Defense Timing Decision -- 5.1 Decision Equations of Players -- 5.2 Solutions of Decision Equations -- 6 Experiments -- 6.1 Experimental Environment and Settings -- 6.2 Performance Evaluation -- 6.3 Defense Effect Evaluation -- 7 Conclusion -- References --Energy- and Resource-Aware Graph-Based Microservices Placement in the Cloud-Fog-Edge Continuum -- 1 Introduction -- 2 Background --

	 3 Model Formulation 3.1 Network Infrastructure 3.2 Microservices Applications and Function Paths 3.3 Energy Efficiency Placement Problem 3.4 Minimum Execution Time of an MFP 4 Proposed Solution for Energy Efficiency Microservices Placement 4.1 Community Based Selection 4.2 Node Inside Community Selection 5 Evaluation and Results 5.1 Experimental Setup 5.2 Results Analysis 6 Conclusion and Future Work References Fast and Layout-Oblivious Tensor-Matrix Multiplication with BLAS 1 Introduction 2 Related Work 3 Background 4 Algorithm Design 4.1 Baseline Algorithm with Contiguous Memory Access 4.2 BLAS-Based Algorithms with Tensor Slices 4.3 BLAS-Based Algorithms with Subtensors 4.4 Parallel BLAS-Based Algorithms 5 Experimental Setup 6 Results and Discussion 7 Conclusion and Future Work References Interpoint Inception Distance: Gaussian- Free Evaluation of Deep Generative Models 1 Introduction 2 Related Work 3 Interpoint Inception Distance 4 Experiments 5 Conclusions References Elliptic-Curve Factorization and Witnesses in (Ell, N) Factorization 2.1 Notation and Basic Facts Concerning the Arithmetic in E(ZN) 2.2 Admissible Numbers and Witnesses Definitions. 3 Decomposition Witnesses in (Ell,EN) factorization.
Sommario/riassunto	The 7-volume set LNCS 14832 – 14838 constitutes the proceedings of the 24th International Conference on Computational Science, ICCS 2024, which took place in Malaga, Spain, during July 2–4, 2024. The 155 full papers and 70 short papers included in these proceedings were carefully reviewed and selected from 430 submissions. They were organized in topical sections as follows: Part I: ICCS 2024 Main Track Full Papers; Part II: ICCS 2024 Main Track Full Papers; Part III: ICCS 2024 Main Track Short Papers; Advances in High-Performance Computational Earth Sciences: Numerical Methods, Frameworks and Applications; Artificial Intelligence and High-Performance Computing for Advanced Simulations; Part IV: Biomedical and Bioinformatics Challenges for Computer Science; Computational Health; Part V: Computational Optimization, Modelling, and Simulation; Generative AI and Large Language Models (LLMs) in Advancing Computational Medicine; Machine Learning and Data Assimilation for Dynamical Systems; Multiscale Modelling and Simulation; Part VI: Network Models and Analysis: From Foundations to Artificial Intelligence; Numerical Algorithms and Computer Arithmetic for Computational Science; Quantum Computing; Part VII: Simulations of Flow and Transport: Modeling, Algorithms and Computation; Smart Systems: Bringing Together Computer Vision, Sensor Networks, and Artificial Intelligence; Solving Problems with Uncertainties; Teaching Computational Science.