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This monograph presents a study of newly developed guaranteed
computational methodologies for eigenvalue problems of self-adjoint
differential operators. It focuses on deriving explicit lower and upper
bounds for eigenvalues, as well as explicit estimations for
eigenfunction approximations. Such explicit error estimations rely on
the finite element method (FEM) along with a new theory of explicit
quantitative error estimation, diverging from traditional studies that
primarily focus on qualitative results. To achieve quantitative error
estimation, the monograph begins with an extensive analysis of the



hypercircle method, that is, the Prager–Synge theorem. It introduces a
novel a priori error estimation technique based on the hypercircle
method. This facilitates the explicit estimation of Galerkin projection
errors for equations such as Poisson's and Stokes', which are crucial for
obtaining lower eigenvalue bounds via conforming FEMs. A thorough
exploration of the fundamental theory of projection-based explicit
lower eigenvalue bounds under a general setting of eigenvalue
problems is also offered. This theory is extensively detailed when
applied to model eigenvalue problems associated with the Laplace,
biharmonic, Stokes, and Steklov differential operators, which are solved
by either conforming or non-conforming FEMs. Moreover, there is a
detailed discussion on the Lehmann–Goerisch theorem for the purpose
of high-precision eigenvalue bounds, showing its relationship with
previously established theorems, such as Lehmann–Maehly's method
and Kato's bound. The implementation details of this theorem with
FEMs, a topic rarely covered in existing literature, are also clarified.
Lastly, the monograph introduces three new algorithms to estimate
eigenfunction approximation errors, revealing the potency of classical
theorems. Algorithm I extends Birkhoff’s result that works for simple
eigenvalues to handle clustered eigenvalues, while Algorithm II
generalizes the Davis–Kahan theorem, initially designed for strongly
formulated eigenvalue problems, to address weakly formulated
eigenvalue problems. Algorithm III utilizes the explicit Galerkin
projection error estimation to efficiently handle Galerkin projection-
based approximations.


