
UNINA99108553703033211. Record Nr.

Titolo The French School of Programming / / edited by Bertrand Meyer

Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, ,
2024

ISBN 9783031345180

Descrizione fisica 1 online resource (451 pages)

Altri autori (Persone) Meyer

Disciplina 005.1

Soggetti Software engineering
Computer science
Programming languages (Electronic computers)
Computer programming
Machine theory
Computer programs - Testing
Software Engineering
Theory of Computation
Programming Language
Programming Techniques
Formal Languages and Automata Theory
Software Testing

Lingua di pubblicazione Inglese

Formato

Edizione [1st ed. 2024.]

Livello bibliografico

Nota di contenuto The French School of Programming: A Personal View -- Part I: Software
Engineering -- “Testing can be formal too”: 30 years later -- A Short
Visit to Distributed Computing Where Simplicity is Considered a First
Class Property -- Modeling: From CASE Tools to SLE and Machine
Learning -- At the Confluence of Software Engineering and Human-
Computer Interaction: a Personal Account -- Part II: Programming
language mechanisms and type systems -- From Procedures, Objects,
Actors, Components, Services, to Agents -- Semantics and syntax,
between computer science and mathematics -- Some remarks about
Dependent Type Theory -- Part III: Theory -- A Personal Historical
Perspective on Abstract Interpretation -- Tracking Redexes in the

Autore Meyer Bertrand

Materiale a stampa

Monografia



Sommario/riassunto

Lambda Calculus -- Confluence of terminating rewriting computations
-- Part IV: Language design and programming methodology --
Programming with union, intersection, and negation types -- Right and
wrong: ten choices in language design.
The French School of Programming is a collection of insightful
discussions of programming and software engineering topics, by some
of the most prestigious names of French computer science. The
authors include several of the originators of such widely acclaimed
inventions as abstract interpretation, the Caml, OCaml and Eiffel
programming languages, the Coq proof assistant, agents and modern
testing techniques. The book is divided into four parts: Software
Engineering (A), Programming Language Mechanisms and Type Systems
(B), Theory (C), and Language Design and Programming Methodology
(D). They are preceded by a Foreword by Bertrand Meyer, the editor of
the volume, a Preface by Jim Woodcock providing an outsider’s
appraisal of the French school’s contribution, and an overview chapter
by Gérard Berry, recalling his own intellectual journey. Chapter 2, by
Marie-Claude Gaudel, presents a 30-year perspective on the evolution
of testing starting with her own seminal work. In chapter 3, Michel
Raynal covers distributed computing with an emphasis on simplicity.
Chapter 4, by Jean-Marc Jézéquel, former director of IRISA, presents
the evolution of modeling, from CASE tools to SLE and Machine
Learning. Chapter 5, by Joëlle Coutaz, is a comprehensive review of the
evolution of Human-Computer Interaction. In part B, chapter 6, by
Jean-Pierre Briot, describes the sequence of abstractions that led to the
concept of agent. Chapter 7, by Pierre-Louis Curien, is a personal
account of a journey through fundamental concepts of semantics,
syntax and types. In chapter 8, Thierry Coquand presents “some
remarks on dependent type theory”. Part C begins with Patrick Cousot’s
personal historical perspective on his well-known creation, abstract
interpretation, in chapter 9. Chapter 10, by Jean-Jacques Lévy, is
devoted to tracking redexes in the Lambda Calculus. The final chapter
of that part, chapter 11 by Jean-Pierre Jouannaud, presents advances in
rewriting systems, specifically the confluence of terminating rewriting
computations. Part D contains two longer contributions. Chapter 12 is a
review by Giuseppe Castagna of a broad range of programming topics
relying on union, intersection and negation types. In the final chapter,
Bertrand Meyer covers “ten choices in language design” for object-
oriented programming, distinguishing between “right” and “wrong”
resolutions of these issues and explaining the rationale behind Eiffel’s
decisions. This book will be of special interest to anyone with an
interest in modern views of programming — on such topics as
programming language design, the relationship between programming
and type theory, object-oriented principles, distributed systems,
testing techniques, rewriting systems, human-computer interaction,
software verification… — and in the insights of a brilliant group of
innovators in the field.


