

1. Record Nr.	UNINA9910850870903321
Titolo	Daily Kennebec journal
Pubbl/distr/stampa	Augusta, Me., : Sprague, Owen & Nash, 1870-1975
Descrizione fisica	106 volumes
Soggetti	Newspapers. Augusta (Me.) Newspapers Kennebec County (Me.) Newspapers Maine Augusta Maine Kennebec County
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Periodico
Note generali	Issued weekly section titled: Parade of youth, <Jan. 19-Mar. 1, 1936>
2. Record Nr.	UNINA9910557730003321
Autore	Nisisako Takasi
Titolo	Particles Separation in Microfluidic Devices
Pubbl/distr/stampa	Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica	1 online resource (230 p.)
Soggetti	Technology: general issues
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Sommario/riassunto	Microfluidic platforms are increasingly being used for separating a wide variety of particles based on their physical and chemical properties. In

the past two decades, many practical applications have been found in chemical and biological sciences, including single cell analysis, clinical diagnostics, regenerative medicine, nanomaterials synthesis, environmental monitoring, etc. In this Special Issue, we invited contributions to report state-of-the art developments in the fields of micro- and nanofluidic separation, fractionation, sorting, and purification of all classes of particles, including, but not limited to, active devices using electric, magnetic, optical, and acoustic forces; passive devices using geometries and hydrodynamic effects at the micro/nanoscale; confined and open platforms; label-based and label-free technology; and separation of bioparticles (including blood cells), circulating tumor cells, live/dead cells, exosomes, DNA, and non-bioparticles, including polymeric or inorganic micro- and nanoparticles, droplets, bubbles, etc. Practical devices that demonstrate capabilities to solve real-world problems were of particular interest.
