Record Nr.	UNINA9910847069603321
Autore	Kasim Mohd Shahir Bin
Titolo	Spin-While-Burn : The New Approach for Tiny Medical Device Fabrication / / by Mohd Shahir Bin Kasim, Muhammad Akmal Bin Mohd Zakaria, Saiful Bahri Bin Mohamed
Pubbl/distr/stampa	Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
ISBN	981-9714-44-3
Edizione	[1st ed. 2024.]
Descrizione fisica	1 online resource (95 pages)
Collana	SpringerBriefs in Applied Sciences and Technology, , 2191-5318
Altri autori (Persone)	ZakariaMuhammad Akmal Bin Mohd MohamedSaiful Bahri Bin
Disciplina	620.19
Soggetti	Biomaterials Biomedical engineering Surfaces (Technology) Thin films Electric machinery Ultrasonics Biomedical Materials Biomedical Devices and Instrumentation Surfaces, Interfaces and Thin Film Electrical Machines
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di contenuto	Introduction State of Art: Spin-While-Burn Process An Opportunity in Micro-Machining for Spin-While-Burn Process Discovery on Scientific Cutting Phenomenon Challenging and Future Perspective.
Sommario/riassunto	This book explains the challenges and advancements in cutting precise cylindrical shapes on difficult materials through spark erosion. Titled "Spin while Burn," it addresses the drawbacks associated with this process, including unsatisfactory surface finish and limited productivity. Despite utilizing advanced computing and statistical optimization methods, achieving the ideal balance between material removal rate (MRR) and surface quality remains elusive. In response,

1.

the book introduces a hybrid ultrasonic-assisted approach in the wire electrical discharge turning (WEDT) process. By integrating a rotating workpiece with ultrasonic vibration, the authors evaluate its impact on MRR and surface finish. Through meticulous design experiments and statistical analysis, they explore various cutting parameters and machining paths. The book highlights the characterization of machined surfaces through elemental analysis and surface morphology evaluations. The results demonstrate the positive effects of integrating ultrasonic vibration into WEDT, even without optimized ultrasonic parameters. By reducing electrode wire debris and employing multiobjective parameter optimization using the genetic algorithm, significant improvements are achieved in MRR and surface roughness compared to conventional WEDT. "Spin while Burn" consists of five chapters, delving into the challenges, history, principles, performance, and future perspectives of the Spin-while-Burn process in manufacturing. This comprehensive book offers valuable insights into enhancing surface quality and productivity in the cutting of precise cylindrical shapes on challenging materials through spark erosion.