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"A microgrid is a decentralized group of electricity sources and loads
that normally operates, connected to and synchronous with the
traditional wide area synchronous grid (macrogrid), but is able to
disconnect from the interconnected grid and to function autonomously
in "island mode" as technical or economic conditions dictate. Another
use case is the off-grid application, it is called an autonomous, stand-
alone or isolated microgrid. These microgrids are best served by local
energy sources where power transmission and distribution from a
major centralized energy source is too far and costly to execute. They
offer an option for rural electrification in remote areas and on smaller
geographical islands. As a controllable entity, a microgrid can
effectively integrate various sources of distributed generation (DG),
especially renewable energy sources (RES)."--
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