

1. Record Nr.	UNINA990008093570403321
Autore	Lüchinger, Hans Georg
Titolo	Die Auslegung der schweizerischen Bundesverfassung : Dissertation der Rechts-und staatswissenschaftlichen Facultät Universität Zürich / Hans Georg Lüchinger
Pubbl/distr/stampa	Zürich : Polygraphischer Verlag AG, 1954
Descrizione fisica	202 p. ; 24 cm
Disciplina	340
Locazione	FGBC
Collocazione	I D 159
Lingua di pubblicazione	Tedesco
Formato	Materiale a stampa
Livello bibliografico	Monografia
2. Record Nr.	UNINA9910838209503321
Autore	Shah Nita H
Titolo	Solid Geometry with MATLAB Programming
Pubbl/distr/stampa	Aalborg : , : River Publishers, , 2022 ©2022
ISBN	1-000-82414-4 1-00-336068-8 1-003-36068-8 1-000-82412-8 87-7022-760-8
Edizione	[1st ed.]
Descrizione fisica	1 online resource (242 pages)
Collana	Mathematical, Statistical and Computational Modelling for Engineering
Altri autori (Persone)	AcharyaFalguni S
Disciplina	516.23
Soggetti	Geometry, Solid
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	Includes indexes.

Front Cover -- Solid Geometry with MATLAB Programming -- Contents
-- Preface -- 1 Plane -- 1.1 Definition -- 1.2 General Equation of the First Degree in x , y , z Represents a Plane -- 1.3 Transformation of General form to Normal Form -- 1.4 Direction Cosines of the Normal to a Plane -- 1.5 Equation of a Plane Passing through a Given Point -- 1.6 Equation of the Plane in Intercept Form -- 1.7 Reduction of the General Equation of the Plane to the Intercept Form -- 1.8 Equation of a Plane Passing through three Points -- 1.9 Equation of any Plane Parallel to a Given Plane -- 1.10 Equation of Plane Passing through the Intersection of Two Given Planes -- 1.11 Equation of the Plane Passing through the Intersection -- 1.12 Angle between Two Planes -- 1.13 Position of the Origin w.r.t. the Angle between Two Planes -- 1.14 Two Sides of a Plane -- 1.15 Length of the Perpendicular from a Point to a Plane -- 1.16 Bisectors of Angles between Two Planes -- 1.17 Pair of Planes -- 1.18 Orthogonal Projection on a Plane -- 1.19 Volume of a Tetrahedron -- Exercise -- 2 Straight Line -- 2.1 Representation of Line (Introduction) -- 2.2 Equation of a Straight Line in the Symmetrical Form -- 2.3 Equation of a Straight Line Passing through Two Points -- 2.4 Transformation from the Unsymmetrical to the Symmetrical Form -- 2.5 Angle between a Line and a Plane -- 2.6 Point of Intersection of a Line and a Plane -- 2.7 Conditions for a Line to Lie in a Plane -- 2.8 Condition of Coplanarity of Two Straight Lines -- 2.9 Skew Lines and the Shortest Distance between Two Lines -- 2.10 Equation of Two Skew Lines in Symmetric Form -- 2.11 Intersection of Three Planes -- Exercise -- 3 Sphere -- 3.1 Definition -- 3.2 Equation of Sphere in Vector Form -- 3.3 General Equation of the Sphere -- 3.4 Equation of Sphere Whose End-Points of a Diameter are Given.
3.5 Equation of a Sphere Passing through the Four Points -- 3.6 Section of the Sphere by a Plane -- 3.7 Intersection of Two Spheres -- 3.8 Intersection of Sphere S and Line L -- 3.9 Tangent Plane -- 3.10 Equation of the Normal to the Sphere -- 3.11 Orthogonal Sphere -- Exercise -- 4 Cone -- 4.1 Definition -- 4.2 Equation of a Cone with a Conic as Guiding Curve -- 4.3 Enveloping Cone to a Surface -- 4.4 Equation of the Cone whose Vertex is the Origin is Homogeneous -- 4.5 Intersection of a Line with a Cone -- 4.6 Equation of a Tangent Plane at (a, b, r) to the Cone with Vertex Origin -- 4.7 Conditions for Tangency -- 4.8 Right Circular Cone -- Exercise -- 5 Cylinder -- 5.1 Definition -- 5.2 Equation of the Cylinder whose Generators Intersect the Given Conic -- 5.3 Enveloping Cylinder -- 5.4 Right Circular Cylinder -- Exercise -- 6 Central Conicoid -- 6.1 Definition -- 6.2 Intersection of a Line with the Central Conicoid -- 6.3 Tangent Lines and Tangent Plane at a Point -- 6.4 Condition of Tangency -- 6.5 Normal to Central Conicoid -- 6.6 Plane of Contact -- 6.7 Polar Plane of a Point -- Exercise -- 7 Miscellaneous Examples using MATLAB -- Index -- About the Authors -- Back Cover.

Solid geometry is defined as the study of the geometry of three-dimensional solid figures in Euclidean space. There are numerous techniques in solid geometry, mainly analytic geometry and methods using vectors, since they use linear equations and matrix algebra. Solid geometry is quite useful in everyday life, for example, to design different signs and symbols such as octagon shape stop signs, to indicate traffic rules, to design different 3D objects like cubicles in gaming zones, innovative lifts, creative 3D interiors, and to design 3D computer graphics. Studying solid geometry helps students to improve visualization and increase logical thinking and creativity since it is applicable everywhere in day-to-day life. It builds up a foundation for advanced levels of mathematical studies. Numerous competitive exams include solid geometry since its foundation is required to study other

branches like civil engineering, mechanical engineering, computer science engineering, architecture, etc. This book is designed especially for students of all levels, and can serve as a fundamental resource for advanced level studies not only in mathematics but also in various fields like engineering, interior design, architecture, etc. It includes theoretical aspects as well as numerous solved examples. The book includes numerical problems and problems of construction as well as practical problems as an application of the respective topic. A special feature of this book is that it includes solved examples using the mathematical tool MATLAB.
