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Gain the skills required to dive into the fundamentals of the RISC-V
instruction set architecture. This book explains the basics of code
optimization, as well as how to interoperate with C and Python code,
thus providing the starting points for your own projects as you develop
a working knowledge of assembly language for various RISC-V
processors. The RISC-V processor is the new open-source CPU that is
quickly gaining popularity and this book serves as an introduction to
assembly language programming for the processor in either 32- or 64-
bit mode. You'll see how to write assembly language programs for
several single board computers, including the Starfive Visionfive 2 and
the Espressif ESP32=C3 32-hit RISC-V microcontroller. The book also
covers running RISC-V Linux with the QEMU emulator on and Intel/ AMD
based PC or laptop and all the tools required to do so. Moving on, you’
[l examine the basics of the RISC-V hardware architecture, all the
groups of RISC-V assembly language instructions and understand how
data is stored in the computer’s memory. In addition, you'll learn how
to interface to hardware such as GPIO ports. With RISC-V Assembly
Language Programming you’ll develop enough background to use the
official RISC-V reference documentation for your own projects. What
You'll Learn See how data is represented and stored in a RISC-V based
computer Make operating system calls from assembly language and
include other software libraries in projects Interface to various
hardware devices Use the official RISC-V reference documentation.



