1. Record Nr.

Autore
Titolo

Pubbl/distr/stampa
ISBN

Edizione
Descrizione fisica

Collana

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di contenuto

UNINA9910835062103321
Smith Stephen <1623-1678, >

RISC-V Assembly Language Programming : Unlock the Power of the
RISC-V Instruction Set// by Stephen Smith

Berkeley, CA ., : Apress :, : Imprint : Apress, , 2024
9798868801372

[1st ed. 2024.]
1 online resource (369 pages)
Maker Innovations Series, , 2948-2550

929.605

Makerspaces
Maker

Inglese

Materiale a stampa
Monografia
Includes index.

Intro -- Table of Contents -- About the Author -- About the Technical
Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Getting
Started -- History and Evolution of the RISC-V CPU -- What You Will
Learn -- Ten Reasons to Learn Assembly Language Programming --
Running Programs on RISC-V Systems -- Coding a Simple "Hello World"
Program -- Hello World on the Starfive Visionfive 2 -- Programming
Hello World in the QEMU Emulator -- Install QEMU on Windows --
Install QEMU on Linux -- Compiling in Emulated Linux -- About Hello
World on the ESP32-C3 Microcontroller -- Summary -- Exercises --
Chapter 2: Loading and Adding -- Computers and Numbers --
Negative Numbers -- About Two's Complement -- RISC-V Assembly
Instructions -- CPU Registers -- RISC-V Instruction Format -- About
the GCC Assembler -- Adding Registers -- 32-bits in a 64-bit World --
Moving Registers -- About Pseudoinstructions -- About Immediate
Values -- Loading the Top -- Shifting the Bits -- Loading Larger
Numbers into Registers -- More Shift Instructions -- About Subtraction
-- Summary -- Exercises -- Chapter 3: Tooling Up -- GNU Make --
Rebuild a Project -- Rule for Building .S files -- Define Variables --
Build with CMake -- Debugging with GDB -- Preparation to Debug --
Setup for Linux -- Start GDB -- Set Up gdb for the ESP32-C3 --
Debugging with GDB -- Summary -- Exercises -- Chapter 4:
Controlling Program Flow -- Creating Unconditional Jumps --
Understanding Conditional Branches -- Using Branch



Pseudoinstructions -- Constructing Loops -- Create FOR Loops --
Code While Loops -- Coding If/Then/Else -- Manipulating Logical
Operators -- Using AND -- Using XOR -- Using OR -- Adopting Design
Patterns -- Converting Integers to ASCII -- Using Expressions

in Immediate Constants -- Storing a Register to Memory -- Why Not
Print in Decimal? -- Performance of Branch Instructions.

Using Comparison Instructions -- Summary -- Exercises -- Chapter 5:
Thanks for the Memories -- Defining Memory Contents -- Aligning
Data -- About Program Sections -- Big vs. Little Endian -- Pros of Little
Endian -- About Memory Addresses -- Loading a Register

with an Address -- PC Relative Addressing -- Loading Data

from Memory -- Combining Loading Addresses and Memory -- Storing
a Register -- Optimizing Through Relaxing -- Converting to Uppercase
-- Summary -- Exercises -- Chapter 6: Functions and the Stack --
About Stacks -- Jump and Link -- Nesting Function Calls -- Function
Parameters and Return Values -- Managing the Registers -- Summary
of the Function Call Algorithm -- Uppercase Revisited -- Stack Frames
-- Stack Frame Example -- Defining Symbols -- Macros -- Include
Directive -- Macro Definition -- Labels -- Why Macros? -- Using
Macros to Improve Code -- Summary -- Exercises -- Chapter 7: Linux
Operating System Services -- So Many Services -- Calling Convention
-- Finding Linux System Call Numbers -- Return Codes -- Structures
-- About Wrappers -- Converting a File to Uppercase -- Building .S
Files -- Opening a File -- Error Checking -- Looping -- Summary --
Exercises -- Chapter 8: Programming GPIO Pins -- GPIO Overview -- In
Linux, Everything is a File -- Flashing LEDs -- Moving Closer

to the Metal -- Virtual Memory -- In Devices, Everything is Memory --
Registers in Bits -- GPIO Enable Registers -- GPIO Output Set Registers
-- More Flashing LEDs -- GPIOTurnOn in Detail -- Root Access --
Summary -- Exercises -- Chapter 9: Interacting with C and Python --
Calling C Routines -- Printing Debug Information -- Preserving State --
Calling Printf -- Passing a String -- Register Masking Revisited --
Calling Assembly Routines from C -- Packaging the Code -- Static
Library -- Shared Library -- Embedding Assembly Language Code
inside C Code.

Calling Assembly from Python -- Summary -- Exercises -- Chapter 10:
Multiply and Divide -- Multiplication -- Examples -- Division --

Division by Zero and Overflow -- Example -- Example: Matrix
Multiplication -- Vectors and Matrices -- Multiplying 3x3 Integer
Matrices -- Accessing Matrix Elements -- Register Usage -- Summary
-- Exercises -- Chapter 11: Floating-Point Operations -- About
Floating Point Numbers -- About Normalization and NaNs --
Recognizing Rounding Errors -- Defining Floating Point Numbers --
About Floating Point Registers -- The Status and Control Register --
Defining the Function Call Protocol -- Loading and Saving FPU
Registers -- Performing Basic Arithmetic -- Calculating Distance
Between Points -- Performing Floating-Point Conversions -- Floating-
Point Sign Injection -- Comparing Floating-Point Numbers -- Example
-- Summary -- Exercises -- Chapter 12: Optimizing Code --

Optimizing the Uppercase Routine -- Simplifying the Range
Comparison -- Restricting the Problem Domain -- Tips for Optimizing
Code -- Avoiding Branch Instructions -- Moving Code Out of Loops --
Avoiding Expensive Instructions -- Use Macros -- Loop Unrolling --
Delay Preserving Registers in Functions -- Keeping Data Small --
Beware of Overheating -- Summary -- Exercises -- Chapter 13:
Reading and Understanding Code -- Browsing Linux &amp -- GCC
Code -- Comparing Strings -- About the Algorithm -- Macros

and Kernel Options -- Code Created by GCC -- Reverse Engineering



Sommario/riassunto

and Ghidra -- Summary -- Exercises -- Chapter 14: Hacking Code --
Buffer Overrun Hack -- Causes of Buffer Overrun -- Stealing Credit
Card Numbers -- Stepping Through the Stack -- Mitigating Buffer
Overrun Vulnerabilities -- Do Not Use strcpy -- PIE Is Good -- Poor
Stack Canaries Are the First to Go -- Preventing Code Running

on the Stack -- Tradeoffs of Buffer Overflow Mitigation Techniques --
Summary.

Exercises -- Appendix A: The RISC-V Instruction Set -- RV32| Base
Integer Instruction Set -- RV64| Base Integer Instruction Set-in Addition
to RV32l -- RV32M Standard Extension -- RV64M Standard Extension-
in Addition to RV32M -- RV32F Standard Extension -- RV64F Standard
Extension-in Addition to RV32F -- RV32D Standard Extension --
RV64D Standard Extension-in Addition to RV32D -- Appendix B: Binary
Formats -- Integers -- Floating Point -- Addresses -- Appendix C:
Assembler Directives -- Appendix D: ASCII Character Set -- Appendix
E: Answers to Exercises -- Chapter 2 -- Chapter 3 -- Chapter 5 --
Chapter 6 -- Chapter 8 -- Chapter 10 -- Chapter 12 -- Index.

Gain the skills required to dive into the fundamentals of the RISC-V
instruction set architecture. This book explains the basics of code
optimization, as well as how to interoperate with C and Python code,
thus providing the starting points for your own projects as you develop
a working knowledge of assembly language for various RISC-V
processors. The RISC-V processor is the new open-source CPU that is
quickly gaining popularity and this book serves as an introduction to
assembly language programming for the processor in either 32- or 64-
bit mode. You'll see how to write assembly language programs for
several single board computers, including the Starfive Visionfive 2 and
the Espressif ESP32=C3 32-hit RISC-V microcontroller. The book also
covers running RISC-V Linux with the QEMU emulator on and Intel/ AMD
based PC or laptop and all the tools required to do so. Moving on, you’
[l examine the basics of the RISC-V hardware architecture, all the
groups of RISC-V assembly language instructions and understand how
data is stored in the computer’s memory. In addition, you'll learn how
to interface to hardware such as GPIO ports. With RISC-V Assembly
Language Programming you’ll develop enough background to use the
official RISC-V reference documentation for your own projects. What
You'll Learn See how data is represented and stored in a RISC-V based
computer Make operating system calls from assembly language and
include other software libraries in projects Interface to various
hardware devices Use the official RISC-V reference documentation.



