
UNINA99108311743033211. Record Nr.

Titolo Financial modelling in Python [[electronic resource] /] / S. Fletcher & C.
Gardner

Pubbl/distr/stampa Chichester, : Wiley, 2009

ISBN 0-470-68500-X
1-282-88892-7
9786612888922
0-470-74789-7

Descrizione fisica 1 online resource (246 p.)

Collana Wiley finance series

Altri autori (Persone) GardnerChristopher

Disciplina 332.0285/5133
332.02855133

Soggetti Finance - Mathematical models - Computer programs
Python (Computer program language)

Lingua di pubblicazione Inglese

Formato

Edizione [1st edition]

Livello bibliografico

Note generali Description based upon print version of record.

Nota di bibliografia

Nota di contenuto

Includes bibliographical references and index.

Financial Modelling in Python; Contents; 1 Welcome to Python; 1.1 Why
Python?; 1.1.1 Python is a general-purpose high-level programming
language; 1.1.2 Python integrates well with data analysis, visualisation
and GUI toolkits; 1.1.3 Python 'plays well with others'; 1.2 Common
misconceptions about Python; 1.3 Roadmap for this book; 2 The PPF
Package; 2.1 PPF topology; 2.2 Unit testing; 2.2.1 doctest; 2.2.2 PyUnit;
2.3 Building and installing PPF; 2.3.1 Prerequisites and dependencies;
2.3.2 Building the C++ extension modules; 2.3.3 Installing the PPF
package; 2.3.4 Testing a PPF installation
3 Extending Python from C++3.1 Boost.Date Time types; 3.1.1
Examples; 3.2 Boost.MultiArray and special functions; 3.3 NumPy
arrays; 3.3.1 Accessing array data in C++; 3.3.2 Examples; 4 Basic
Mathematical Tools; 4.1 Random number generation; 4.2 N(.); 4.3
Interpolation; 4.3.1 Linear interpolation; 4.3.2 Loglinear interpolation;
4.3.3 Linear on zero interpolation; 4.3.4 Cubic spline interpolation; 4.4
Root finding; 4.4.1 Bisection method; 4.4.2 Newton-Raphson method;
4.5 Linear algebra; 4.5.1 Matrix multiplication; 4.5.2 Matrix inversion;
4.5.3 Matrix pseudo-inverse

Autore Fletcher S (Shayne)

Materiale a stampa

Monografia



Sommario/riassunto

4.5.4 Solving linear systems4.5.5 Solving tridiagonal systems; 4.5.6
Solving upper diagonal systems; 4.5.7 Singular value decomposition;
4.6 Generalised linear least squares; 4.7 Quadratic and cubic roots; 4.8
Integration; 4.8.1 Piecewise constant polynomial fitting; 4.8.2 Piecewise
polynomial integration; 4.8.3 Semi-analytic conditional expectations; 5
Market: Curves and Surfaces; 5.1 Curves; 5.2 Surfaces; 5.3
Environment; 6 Data Model; 6.1 Observables; 6.1.1 LIBOR; 6.1.2 Swap
rate; 6.2 Flows; 6.3 Adjuvants; 6.4 Legs; 6.5 Exercises; 6.6 Trades; 6.7
Trade utilities
7 Timeline: Events and Controller7.1 Events; 7.2 Timeline; 7.3
Controller; 8 The Hull-White Model; 8.1 A component-based design;
8.1.1 Requestor; 8.1.2 State; 8.1.3 Filler; 8.1.4 Rollback; 8.1.5 Evolve;
8.1.6 Exercise; 8.2 The model and model factories; 8.3 Concluding
remarks; 9 Pricing using Numerical Methods; 9.1 A lattice pricing
framework; 9.2 A Monte-Carlo pricing framework; 9.2.1 Pricing non-
callable trades; 9.2.2 Pricing callable trades; 9.3 Concluding remarks;
10 Pricing Financial Structures in Hull-White; 10.1 Pricing a Bermudan;
10.2 Pricing a TARN; 10.3 Concluding remarks
11 Hybrid Python/C++ Pricing Systems11.1 nth imm of year revisited;
11.2 Exercising nth imm of year from C++; 12 Python Excel
Integration; 12.1 Black-scholes COM server; 12.1.1 VBS client; 12.1.2
VBA client; 12.2 Numerical pricing with PPF in Excel; 12.2.1 Common
utilities; 12.2.2 Market server; 12.2.3 Trade server; 12.2.4 Pricer server;
Appendices; A Python; A.1 Python interpreter modes; A.1.1 Interactive
mode; A.1.2 Batch mode; A.2 Basic Python; A.2.1 Simple expressions;
A.2.2 Built-in data types; A.2.3 Control flow statements; A.2.4
Functions; A.2.5 Classes; A.2.6 Modules and packages
A.3 Conclusion

""Fletcher and Gardner have created a comprehensive resource that will
be of interest not only to those working in the field of finance, but also
to those using numerical methods in other fields such as engineering,
physics, and actuarial mathematics. By showing how to combine the
high-level elegance, accessibility, and flexibility of Python, with the
low-level computational efficiency of C++, in the context of interesting
financial modeling problems, they have provided an implementation
template which will be useful to others seeking to jointly optimize the
use of computational and human r


