	UNINA9910831060403321
Autore	Liang Shunlin
Titolo	Quantitative remote sensing of land surfaces [[electronic resource] /] / Shunlin Liang
Pubbl/distr/stampa	Hoboken, N.J., : Wiley-Interscience, c2004
ISBN	1-280-25291-X 9786610252916 0-470-34800-3 0-471-72371-1 0-471-72372-X
Descrizione fisica	1 online resource (562 p.)
Collana	Wiley series in remote sensing
Disciplina	550.287 550/.28/7 624.151
Soggetti	Earth sciences - Remote sensing Environmental sciences - Remote sensing Remote sensing
Lingua di pubblicazione	Inglese
	· · · · · · · · · · · · · · · · · · ·
Formato	Materiale a stampa
Livello bibliografico	Materiale a stampa Monografia
Livello bibliografico Note generali	Materiale a stampa Monografia Description based upon print version of record.
Livello bibliografico Note generali Nota di bibliografia	Materiale a stampa Monografia Description based upon print version of record. Includes bibliographical references and index.

1.

	Scattering; 2.3.2 Mie Scattering; 2.3.3 Aerosol Particle Size Distributions; 2.3.4 Gas Absorption; 2.3.5 Aerosol Climatology; 2.4 Solving Radiative Transfer Equations; 2.4.1 Radiation Field Decomposition 2.4.2 Numerical Solutions2.4.2.1 Method of Successive Orders of Scattering; 2.4.2.2 Method of Discrete Ordinates; 2.4.3 Approximate Solutions: Two-Stream Algorithms; 2.4.4 Representative Radiative Transfer Solvers (Software Packages); 2.5 Approximate Representation for Incorporating Surface BRDF; 2.6 Summary; References; CHAPTER 3 Canopy Reflectance Modeling; 3.1 Canopy Radiative Transfer Formulation; 3.1.1 Canopy Configuration; 3.1.2 One-Dimensional Radiative Transfer Formulation; 3.1.3 Boundary Conditions; 3.1.4 Hotspot Effects; 3.1.5 Formulations for Heterogeneous Canopies 3.2 Leaf Optical Models; 3.2.4 Stochastic Models; 3.2.5 Turbid Medium Models; 3.3 Solving Radiative Transfer Equations; 3.1.1 Approximate Solutions; 3.1.1 Models Based on KM Theory; 3.3.1.2 Decomposition of the Canopy Radiation Field; 3.3.1.3 Approximation of Multiple Scattering; 3.3.2 Numerical Solutions: Gauss-Seidel Algorithm; 3.4 Geometric Optical Models; 3.5 Computer Simulation Models; 3.5.1 Monte Carlo Ray Tracing Models; 3.5.1.1 Forward and Reverse Ray Tracing; 3.5.1.2 Canopy Scene Generation 3.5.1.3 A Forest Ray Tracing Algorithm3.5.1.4 Botanical Plant Modeling System Model; 3.5.2.5 PRINT Model; 3.5.2 Radiosity Models; 3.5.2.1 Generating the 3D Scene; 3.5.2.2 Calculating the Emission for All Surfaces in the Scene; 3.5.2.3 Computing the View Factors; 3.5.2.4 Solving the Radiosity Equation; 3.5.2.5 Rendering the Scene for a Given Viewpoint and Calculating BRF; 3.5.2.6 Applications; 3.6 Summary; References; CHAPTER 4 Soil and Snow Reflectance Modeling; 4.1 Single Scattering Properties of Snow and Soil; 4.1.1 Optical Properties of Snow; 4.1.2 Optical Properties of Soils 4.2 Multiple Scattering Solutions for Angular Reflectance from Snow and Soil
Sommario/riassunto	Processing the vast amounts of data on the Earth's land surface environment generated by NASA's and other international satellite programs is a significant challenge. Filling a gap between the theoretical, physically-based modelling and specific applications, this in-depth study presents practical quantitative algorithms for estimating various land surface variables from remotely sensed observations.A concise review of the basic principles of optical remote sensing as well as practical algorithms for estimating land surface variables quantitatively from remotely sensed observations.Emp