. Record Nr. Autore Titolo Pubbl/distr/stampa	UNINA9910831014603321 Mori Keita Metal-Responsive Base Pair Switching of Ligand-type Uracil Nucleobases [[electronic resource] /] / by Keita Mori Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
ISBN	981-9994-00-4
Edizione	[1st ed. 2024.]
Descrizione fisica	1 online resource (137 pages)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5061
Disciplina	620.19 547.7
Soggetti	Biomaterials Nucleic acids Coordination compounds Nanotechnology Self-assembly (Chemistry) Biocompatible Materials Nucleic Acids Layer-by-Layer Nanoparticles Nucleic Acid Coordination Chemistry Self-assembly
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di contenuto	 General introduction 2. Metal-responsive DNA strand displacement reactions driven by base pair switching of 5- hydroxyuracil nucleobases 3. Metal-dependent base pair switching of N,N,-dicarboxymethyl-5-aminouracil nucleosides 4. Metal- responsive DNA tweezers driven by base pair switching of 5- hydroxyuracil nucleobases 5. Conclusion and perspectives.
Sommario/riassunto	In this thesis, the author proposes "metal-responsive base pair switching" of ligand-modified nucleobases as a novel tool for stimuli- responsive control of DNA assemblies. It is written to demonstrate broad applicability of the base pair switching in dynamic DNA

1.

nanotechnology and inspire researchers to use this technique. Based on specific interactions between ligand-type nucleobases and target metal ions, in this volume, DNA hybridization was dynamically controlled through strand displacement reactions. The base pair switching was further applied to develop metal-dependent DNA molecular machines. This novel strategy for stimuli-responsive regulation of DNA assemblies will greatly expand the scope of dynamic DNA nanotechnology. This volume uniquely features importance of elaborate molecular design based on chemistry for imparting stimuli responsiveness to DNA assemblies.