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Many scientific, medical or engineering problems raise the issue of
recovering some physical quantities from indirect measurements; for
instance, detecting or quantifying flaws or cracks within a material from
acoustic or electromagnetic measurements at its surface is an essential
problem of non-destructive evaluation. The concept of inverse
problems precisely originates from the idea of inverting the laws of
physics to recover a quantity of interest from measurable data.
Unfortunately, most inverse problems are ill-posed, which means that
precise and stable solutions are not easy to devise


