	UNINA9910830243803321
Autore	Ishikawa Tsutomu
Titolo	Superbases for organic synthesis [[electronic resource]] : guanidines, amidines and phosphazenes and related organocatalysts / / editor, Tsutomu Ishikawa
Pubbl/distr/stampa	Chichester, UK, : John Wiley & Sons, 2009
ISBN	1-282-69052-3 9786612690525 0-470-74085-X 0-470-74086-8
Descrizione fisica	1 online resource (346 p.)
Disciplina	541.395 547.2
Soggetti	Amidines Guanidines Phosphazo compounds Organic bases
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Formato Livello bibliografico	
	Materiale a stampa
Livello bibliografico	Materiale a stampa Monografia

1.

	 3.3 Application of Amidines to Organic Synthesis; 3.3.1 Acetoxybromination; 3.3.2 Aldol -Like Reaction; 3.3.3 Azidation; 3.3.4 Aziridination; 3.3.5 Baylis-Hillman Reaction 3.3.6 Cycloaddition3.3.7 Dehydrohalogenation; 3.3.8 Deprotection; 3.3.9 Deprotonation; 3.3.10 Displacement Reaction; 3.3.11 Horner-Wadsworth-Emmons Reaction; 3.3.12 Intramolecular Cyclization; 3.3.13 Isomerization; 3.3.14 Metal -Mediated Reaction; 3.3.15 Michael Reaction; 3.3.16 Nef Reaction; 3.3.17 Nucleophilic Epoxidation; 3.3.18 Oxidation; 3.3.19 Pudovik-phospha-Brook Rearrangement; 3.3.20 [1,4]-Silyl Transfer; 3.3.21 Tandem Reaction; 3.4 Amidinium Salts: Design and Synthesi s; 3.4.1 Catalyst; 3.4.2 Molecular Recognition; 3.4.3 Reagent Source; 3.5 Concluding Remarks; References 4. Guanidines in Organic Synthesis4.1. Introduction; 4.2. Preparation of Chiral Guanidines; 4.2.1 Polysubstituted Acyclic and Monocyclic Guanidines; 4.2.2 Monosubstituted Acyclic and Monocyclic Guanidines; 4.2.4 Preparation Based on DMC Chemistry; 4.3 Guanidines as Synthetic Tools; 4.3.1 Addition; 4.3.2 Substitution; 4.3.3 Others; 4.4 Guanidinium Salt; 4.4.1 Guanidinium Ylide; 4.4.2 Ionic Liquid; 4.4.3 Tetramethylguanidinium Azide (TMGA); 4.5 Concluding Remarks; References; 5. Phosphazene: Preparation, Reaction and Catalytic Role; 5.1 Introduction 5.2 Deprotonative Transformations Using Stoichiometric Phosphazenes5.2.1 Use of P1 Base; 5.2.2 Use of P2 Base; 5.2.3 Use of P4 Base; 5.2.4 Use of P5 Base; 5.3 Transformation Using Phosphazene Catalyst; 5.3.1 Addition of Nucleophiles to Alkyne; 5.3.2 Catalytic Activation of Silylated Nucleophiles; 5.4 Proazaphosphatrane Base (Verkade's Base); 5.4.1 Properties of Proazaphosphatrane Base (Verkade's Base); 5.4.1 Properties of Proazaphosphatrane; 5.4.2 Synthesis Using Proazphosphatrane; 5.5 Concluding Remarks; References; 6. Polymer-Supported Organosuperbases; 6.1 Introduction; 6.2 Acylation Reactions; 6.3 Alkyla
Sommario/riassunto	Guanidines, amidines and phosphazenes have been attracting attention in organic synthesis due to their potential functionality resulting from their extremely strong basicity. They are also promising catalysts because of their potential for easy molecular modification, possible recyclability, and reduced or zero toxicity. Importantly, these molecules can be derived as natural products - valuable as scientists move towards "sustainable chemistry", where reagents and catalysts are derived from biomaterial sources. Superbases for Organic Synthesis is an essential guide to these important