	UNINA9910830177303321
Autore	Bertein Jean-Claude
Titolo	Discrete stochastic processes and optimal filtering / / Jean-Claude Bertein, Roger Ceschi
Pubbl/distr/stampa	London, United Kingdom : , : ISTE
	Hoboken, New Jersey : , : John Wiley, , 2010
ISBN	1-118-60035-5
	1-299-18742-0
	1-118-60048-7
	1-118-60053-3
Edizione	[2nd ed.]
Descrizione fisica	1 online resource (301 p.)
Collana	Digital signal and image processing series
Disciplina	621.382/2
	621.3822
Soggetti	Signal processing - Mathematics
	Digital filters (Mathematics)
	Stochastic processes
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Formato Livello bibliografico	Monografia
Livello bibliografico	Monografia

1.

	of a WSS process; 3.3.1. Problem; 3.3.2. Results; 3.4. Introduction to digital filtering; 3.5. Important example: autoregressive process 3.6. Exercises for Chapter 3Chapter 4. Estimation; 4.1. Position of the problem; 4.2. Linear estimation; 4.3. Best estimate - conditional expectation; 4.4. Example: prediction of an autoregressive process AR (1); 4.5. Multivariate processes; 4.6. Exercises for Chapter 4; Chapter 5. The Wiener Filter; 5.1. Introduction; 5.1.1. Problem position; 5.2. Resolution and calculation of the FIR filter; 5.3. Evaluation of the least error; 5.4. Resolution and calculation of the IIR filter; 5.5. Evaluation of least mean square error; 5.6. Exercises for Chapter 5 Chapter 6. Adaptive Filtering: Algorithm of the Gradient and the LMS6. 1. Introduction; 6.2. Position of problem; 6.3. Data representation; 6.4. Minimization of the cost function; 6.4.1. Calculation of the cost function; 6.5. Gradient algorithm; 6.6. Geometric interpretation; 6.7. Stability and convergence; 6.8. Estimation of gradient and LMS algorithm; 6.8.1. Convergence of the algorithm of the LMS; 6.9. Example of the application of the LMS algorithm; 6.10. Exercises for Chapter 6; Chapter 7. The Kalman Filter; 7.1. Position of problem; 7.2. Approach to estimation; 7.3.3. Innovation process; 7.3.4. Covariance matrix of the innovation process; 7.3.5. Estimation; 7.3.6. Riccati's equation; 7.3.7. Algorithm and summary; 7.4. Exercises for Chapter 7; 7.5. Appendices; 7.6. Examples treated using Matlab
Sommario/riassunto	software; Table of Symbols and Notations; Bibliography; Index Optimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which are used
	in relation to non-stationary signals. Exercises with solutions feature in each chapter to demonstrate the practical application of these ideas using MATLAB.