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"Flow-induced vibration is the term for the phenomena of vibration and
noise that is caused by fluid flow. Excessive flow-induced vibrations
can cause fatigue or failure in process and plant equipment, which can
in turn lead to operational disruptions, lost production, and costly
repairs. Mechanical engineers can help avoid these issues by
performing a flow-induced vibration analysis during the design phase
of a project. Industries that employ plants with high capital costs, such
as the nuclear, power, petrochemical, and aerospace industries, have a
particular interest in understanding and mitigating flow-induced
vibrations"--


