Record Nr.	UNINA9910830016503321
Titolo	Molecular breeding for rice abiotic stress tolerance and nutritional quality / / edited by Mohammad Anwar Hossain
Pubbl/distr/stampa	Hoboken, New Jersey : , : Wiley Blackwell, , [2021] ©2021
ISBN	1-119-63316-8
	1-119-63317-6
	1-119-63315-X
Descrizione fisica	1 online resource (467 pages)
Disciplina	633 18
Soggetti	Rice - Effect of stress on - Genetic aspects
	Inglese
Nota di contenuto	Cover Title Page Copyright Contents Editor Biographies Preface List of Contributors Chapter 1 Rice Adaptation to Climate Change: Opportunities and Priorities in Molecular Breeding Introduction Rice Production Scenario and Climate Change Prospects of Molecular Breeding for ClimateResilient Rice Molecular Breeding in Rice Breeding for Abiotic Stress Tolerance Drought Salinity Submergence High Temperature Low Temperature Breeding for Biotic Stress Tolerance Diseases Pests Weed Competitiveness Conclusion References Chapter 2 Molecular Breeding for Improving Salinity Tolerance in Rice: Recent Progress and Future Prospects Introduction Salt Tolerance Mechanisms RootLevel Ion Exclusion PlantLevel Compartmentation CellLevel Compartmentation Natural Variability for Salt Tolerance in Rice Germplasm Conventional Tools to Improve Salinity Tolerance Molecular Tools to Improve Salinity Tolerance QTL Mapping MarkerAssisted Selection Candidate Genes and Allele Mining Genetic Engineering to Improve Salt Tolerance Novel Tools to Aid in Molecular Breeding MultiParental Advanced Generation Intercross Strategy Genomic Selection Phenomics NextGeneration Sequencing Genome Editing Conclusion and Future prospects

1.

Acknowledgments -- References -- Chapter 3 Molecular Breeding for Improving Drought Tolerance in Rice: Recent Progress and Future Perspectives -- Introduction -- The Drought Challenges and Its Distribution -- Climate Change and Drought -- Drought Impacts on the Rice Plant -- Drought Phenotyping Platforms -- Drought Screening Protocols -- FieldBased Phenotyping -- Design and Management of Field Drought Experiments -- TraitBased Selection for Drought Resistance.

Direct Selection for Yield Under Stress -- Molecular Markers and Genotyping Strategies -- GenomeWide Scans with Microsatellite Markers (Simple Sequence Repeats, SSRs) -- SNP (Single Nucleotide Polymorphism) Genotyping -- TraitSpecific SNPs Used as Diagnostic Markers -- Genetic Basis of Drought Tolerance in Rice -- Mapping and Deployment of Drought QTLs -- Fine Mapping of Identified Genetic Regions -- Development of NILs and PLs Carrying Drought QTLs in Background of High Yielding Rice Varieties -- MAS Introgression of Multiple Traits -- Understanding the Molecular Basis of Complexities of Epistatic Interactions -- Modern Breeding Strategies and Programs for Accelerated Genetic Gain -- Rapid Breeding Cycles -- Novel Breeding Strategies Using GS -- Deployment of Genome Editing, Especially the CRISPR Technologies -- Conclusion -- References -- Chapter 4 Molecular Breeding for Improving Flooding Tolerance in Rice: Recent Progress and Future Perspectives -- Introduction -- Rice Tolerant to Germination Stage Oxygen Deficiency and Submergence and Stagnant Flooding? -- History of Flooding Tolerance and Molecular Breeding --Convergence of Conventional and Molecular Breeding -- Conclusion and Future Perspective -- Acknowledgment -- References -- Chapter 5 Molecular Breeding for Improving Heat Stress Tolerance in Rice: Recent Progress and Future Perspectives -- Introduction -- Climate Change and Heat Tolerance Genotype Needs -- Recent Progress on Rice Breeding -- Plant Physiology on HeatStress Response -- Net Photosynthesis Rate -- Grain Filling -- Response in Germination --Response in Anthesis -- Amylose Content Response to Heat -- Heat Induced Quality Decline of Rice (WhiteBack Kernel) -- Source Sink Dynamics -- Genetic Background -- Breeding Materials (Donors) --Genetic Diversity Analysis -- Phenotyping -- Putative and Candidate Genes/QTLs.

MarkerAssisted Selection (Microsatellites and SNP Arrays) --Proteomics -- Future Perspectives -- Conclusions -- References --Chapter 6 Molecular Breeding for Improving Cold Tolerance in Rice: Recent Progress and Future Perspectives -- Introduction -- Preliminary Mapping of ColdTolerant QTLs and Fine Mapping of Major Loci -- Map Based Cloning and Molecular Mechanism of ColdResistant QTLs --Molecular Regulatory Networks for Cold Tolerance in Oryza sativa --CBF Regulatory Pathway -- MYB Regulatory Pathway -- Outlook --References -- Chapter 7 Molecular Breeding for Lower Cadmium Accumulation in Rice Grain: Progress and Perspectives -- Introduction -- Cd Toxicity to Human Health -- The Origin of Cd Contamination in Soils -- Cd Accumulation in Rice -- Cd Uptake and Distribution Patterns During the Whole Growth Cycle of Rice -- The Diversity of Cd Accumulation Trait in Different Varieties of Rice -- Genetic Basis for Cd Accumulation in Rice -- Influence of Environmental Factors on Cd Accumulation in Rice -- Influence of Soil Water on Rice Cd Accumulation -- Influence of pH Values in Soil and Irrigation Water on Rice Cd Accumulation -- Effect of the Application of Other lons or Chemical Compounds on Rice Cd Accumulation -- Influence of Rhizosphere Microorganisms on Rice Cd Accumulation -- Influence of Genetic Factors on Cd Accumulation in Rice -- Transporters for Cd

Uptake and Translocation -- Genes Involved in Cd Chelation --Regulating Genes to Mediate Grain Cd Accumulation in Rice --Molecular Breeding for LowCd Accumulation in Rice Grains --Screening and Identification of LowCd Varieties -- Molecular Marker Assisted LowCd Gene Aggregation Breeding -- Gene EditingBased Molecular Breeding -- Conclusions and Perspectives --Acknowledgments -- References.

Chapter 8 Molecular Breeding for Improving Arsenic Stress Tolerance in Rice: Recent Progress and Future Perspectives -- Introduction --Tolerance to Arsenic in Rice -- The Phytotoxic Effects of Arsenic and the Rice Defense Response -- Genetic Diversity for Arsenic Tolerance -- Genetic Bases of Arsenic Tolerance -- Molecular Breeding Options for Rice Tolerance to Arsenic -- MarkerAssisted Recurrent Selection --Genomic Selection -- Genomic Selection for Arsenic Tolerance in Rice: A Case Study -- Methods -- Genomic Prediction Results -- Cross Validation Within the Reference Population -- Genomic Prediction Across Populations -- Implication for Breeding for Arsenic Tolerance --Future Prospects -- References -- Chapter 9 Molecular Breeding for Improving Ozone Tolerance in Rice: Recent Progress and Future Perspectives -- Introduction -- Tropospheric Ozone: A Major Threat to Rice Production in Asia -- Mechanisms of Ozone Damage -- Ozone Tolerance Mechanisms -- Ozonelmpact Assessments -- Molecular Breeding Strategies for Improved Ozone Tolerance -- Breeding Progress and Future Perspectives of Ozone Tolerance in Rice --Conclusion -- References -- Chapter 10 Molecular Breeding Strategies for Enhancing Rice Yields Under Low Light Intensity -- Introduction --Effect of Low Light in Rice Physiology, Development and Yield --Candidate Genes and Pathways Imparting Tolerance -- Low Light Perception -- Molecular Targets for Erect Lamina -- Molecular Basis of Delayed Senescence -- Cross Talk Between Various Stresses -- "Omics" and Mapping Studies -- Future Prospects and Molecular Breeding Strategy -- References -- Chapter 11 Harnessing Tolerance to Low Phosphorus in Rice: Recent Progress and Future Perspectives --Introduction -- Phosphorus Uptake and Assimilation in Plants -- Role of Low P in Rice Development and Growth -- Uptake and Transport of P in Rice.

Signaling in Response to Low Pi -- Assimilation of P in Rice --Vegetative Stage -- Reproductive Stage -- Impact of P Deficiency on Rice -- Resources That Have Helped Enhance the Understanding of Low P Tolerance in Rice -- QTLs -- Functionally Validated Low P Tolerance Potential Candidates -- Molecular Targets Available in Rice for Breeding -- PUP1 History and Deployment of PUP1 Based Markers for MAS --Other Haplotypes Reported for PUP1 and Implications for Breeding Program -- Beyond PSTOL1 -- Future Prospects -- Acknowledgments -- References -- Chapter 12 Molecular Breeding for Improving Nitrogen Use Efficiency in Rice: Progress and Perspectives --Introduction -- Evaluation of Genetic Variation for Nitrogen Use Efficiency -- Identification of QTL and Genomic Regions through Biparental and Association Mapping -- QTL -- Association Mapping --Expression Analyses of Candidate Genes Associated with Nitrogen Metabolism -- Ways to Go for the Development of Rice Varieties --Conclusions -- References -- Chapter 13 Dissecting the Molecular Basis of DroughtInduced Oxidative Stress Tolerance in Rice --Introduction -- Effect of Drought Stress in Rice -- Sources of ROS Production during Drought Stress in Rice Plants -- Antioxidative Defenses and Redox Homeostatic Mechanisms in Rice in Response to Drought -- ROS Signaling under Drought Stress -- HighThroughput Technologies to Identify DroughtInduced Oxidative StressTolerance

	Mechanisms Genome Editing Using CRISPRCas9 Technology Expressed Sequence Tags (ESTs) Gene Networks RNASeq Technology MicroRNA (miRNA) Technology VirusInduced Gene Silencing Machinery TILLING (Targeting Induced Local Lesions in Genomes) Identification of Superior Alleles or QTLs Associated with Drought Tolerance Molecular Mechanism in Tolerant Genotype in Comparison to Sensitive Genotype under Drought. Conclusion and Future Perspectives.
Sommario/riassunto	"The chapters of this book aim to contribute the latest understandings of molecular and genetic bases of abiotic stress tolerance, yield and quality improvement of rice to develop strategies for abiotic stress tolerance and biofortification, which leads to enhanced crop productivity under abiotic stress conditions, as well as better utilization of natural resources to ensure food security through modern breeding. Topics covered include: - Rice adaptation to climate change - Molecular breeding for improving UB-radiation tolerance in rice - Molecular breeding for improving abiotic oxidative stress tolerance in rice - Molecular breeding for grain quality improvement in rice - Application of rapid generation advance system in rice breeding for the development of stress tolerant rice varieties This book will provide comprehensive information on each topic, much needed by scientists and plant breeders for developing new stress tolerant rice varieties"