Record Nr.	UNINA9910829927703321
Titolo	Lipases and phospholipases in drug development [[electronic resource]] : from biochemistry to molecular pharmacology / / edited by Gunter Muller and Stefan Petry
Pubbl/distr/stampa	Weinheim, : Wiley-VCH, c2004
ISBN	1-280-52070-1 9786610520701 3-527-60570-3 3-527-60191-0
Descrizione fisica	1 online resource (356 p.)
Altri autori (Persone)	MullerGunter PetryStefan
Disciplina	572.75 572.757
Soggetti	Lipase Phospholipases Drug development
Lingua di pubblicazione	Inglese
• •	5
Formato	Materiale a stampa
Formato Livello bibliografico	Materiale a stampa Monografia
	Materiale a stampa
Livello bibliografico	Materiale a stampa Monografia

1.

	associated Phosphatidic Acid-selective Phospholipase A(1)s (mPA-PLA (1) and mPA-PLA(1)); 2.3.1 Historical Aspects; 2.3.2 Characterization and Distribution; 2.3.3 Structural Characteristics 2.3.4 Function2.4 Phosphatidic Acid-preferring Phospholipase A(1) (PA-PLA(1)); 2.4.1 Historical Aspects; 2.4.2 Characterization and Distribution; 2.4.3 Substrate Specificity; 2.4.4 Function; 2.5 KIAA0725P, a Novel PLA(1) with Sequence Homology to a Mammalian Sec23p- interacting Protein, p125; 2.5.1 Historical Aspects; 2.5.2 Characterization and Distribution; 2.6 References; 3 Rational Design of a Liposomal Drug Delivery System Based on Biophysical Studies of Phospholipase A(2) Activity on Model Lipid Membranes; 3.1 Introduction 3.2 Role for Secretory Phospholipase A(2) (sPLA(2)) in Liposomal Drug Delivery3.3 Lateral Microstructure of Lipid Bilayers and its Influence on sPLA(2); 3.4 sPLA(2) Degradation of Drug-delivery Liposomes: A New Drug-delivery Principle; 3.4.1 Liposomes Protected by Polymer Coating; 3.4.2 Biophysical Model Drug-delivery System to Study sPLA(2) Activity; 3.4.3 Effect of Lipid Composition on sPLA(2)-triggered Drug Release and Absorption; 3.4.4 Effect of Temperature on Liposomal Drug Release and Absorption by sPLA(2); 3.4.5 Liposomal Drug Release and Absorption; 4.2 Structure and Catalytic Mechanism of Mammalian Phospholipase D; 4.3 Cellular Locations of PLD1 and PLD2; 4.4 Post-translational Modification of PLD; 4.5 Regulation of PLD1 and PLD2; 4.5.1 Role of PIP(2); 4.5.2 Role of PKC; 4.6 Role of Rho Family GTPases; 4.7 Role of Arf Family GTPases; 4.8 Role of Tyrosine Kinase; 4.9 Role of Ral; 4.10 Cellular Functions of PLD in Vesicle Trafficking in Goigi
Sommario/riassunto	4.13 Role of PLD in Exocytosis and Endocytosis Lipases and Phospholipases are key control elements in mammalian metabolism. They share many common features that set them apart from other metabolic enzyme classes, most importantly their association with biological membranes. Their potential as drug targets for the treatment of metabolic diseases is widely recognized, and the first lipase inhibitor drugs have been successfully introduced.Providing drug developers with a firm foundation for lipase-centered drug design, the editors of this volume have assembled experts from different scientific disciplines to create a comprehensive handboo