Record Nr.	UNINA9910829907103321
Titolo	Cellular and biomolecular recognition [[electronic resource]] : synthetic and non-biological molecules / / edited by Raz Jelinek
Pubbl/distr/stampa	Weinheim, : Wiley-VCH Chichester, : John Wiley [distributor], 2009
ISBN	1-282-68353-5 9786612683534 3-527-62701-4 3-527-62702-2
Descrizione fisica	1 online resource (371 p.)
Altri autori (Persone)	JelinekRaz
Disciplina	579 620.192
Soggetti	Biomolecules Cellular recognition Biomimetics Biomolecules - Structure
Lingua di pubblicazione	Inglese
0	inglese
Formato	Materiale a stampa
	Materiale a stampa Monografia
Formato	Materiale a stampa Monografia Description based upon print version of record.
Formato Livello bibliografico	Materiale a stampa Monografia

1.

	 Biomimetic Nanoparticles Providing Molecularly Defined Binding Sites - Protein-Featuring Structures versus Molecularly Imprinted Polymers; 2.1 Introduction; 2.2 Core Materials and Functionalities 2.2.1 Inorganic Core Materials2.2.1.1 Inorganic Crystalline Nanoparticles; 2.2.1.2 Particles with Silica Cores; 2.2.1.3 Metals and Metal Oxides; 2.2.2 Organic Core Materials; 2.2.2.1 Polymers, Lipids and Fullerenes; 2.3 Functional Shells; 2.3.1 Organic Shells; 2.3.2 MIPs; 2.3.2.1 Tools for MIP Development; 2.3.2.2 Bulk MIP and Proteins; 2.3.2.3 Nanospheric MIPs in General; 2.3.2.4 Nanospheric MIPs and Proteins; 2.4 Applications; 2.4.1 Biopurification; 2.4.1.1 Magnetic Nanoparticles; 2.4.1.2 MIPs with Magnetizable Cores; 2.4.2 Drug Delivery and Drug Targeting 2.4.2.1 Nanoparticle Systems for Drug Delivery2.4.2.2 Ligands on Nanoparticle Surfaces; 2.4.2.3 Targeting of Specific Cells; 2.5 Products; 2.5.1 MIPs-Applications and Products; 2.5.2 Luminex Assay; 2.6 Conclusions; References; 3: Interaction Between Silica Particles and Human Epithelial Cells: Atomic Force Microscopy and Fluorescence Study; 3.1 Interaction of Silica with Biological Cells: Background; 3.2 Interaction of a Silica Particle with the Cell Surface: How It Is Seen with AFM; 3.2.1 AFM; 3.2.2 AFM on Cells; 3.2.2.1 Cell Culture; 3.2.2.2 AFM; 3.2.3 AFM Probe Preparations 3.2.4 Models to Analyze the Cell Surface: Need for a Two-Layer Model3.2.5 Experimental Data; 3.2.5.1 Surface Brush on Cancer and Normal Cells; 3.2.5.2 Measurement of Adhesion: Silica Particle-Cell Interaction; 3.2.5.3 Can the Difference in Adhesion Be Used to Detect Cancer Cells; 3.3 Ultra-Bright Fluorescent Silica Particles to Be Used to Study Interaction with Cells; 3.4. Ultra-Bright Fluorescent Silica Particles to Distinguish Between Cancer and Normal
Sommario/riassunto	With its exploration of the scientific and technological characteristics of systems exploiting molecular recognition between synthetic materials, such as polymers and nanoparticles, and biological entities, this is a truly multidisciplinary book bridging chemistry, life sciences, pharmacology and medicine. The authors introduce innovative biomimetic chemical assemblies which constitute platforms for recruitment of cellular components or biological molecules, while also focusing on physical, chemical, and biological aspects of biomolecular recognition. The diverse applications covered includ