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"Connectivity and software-based automotive components are now the
norm in motor manufacturing, and there can be more than 100 million
lines of code in a modern car, making the vehicle highly vulnerable to
hacking and other cybersecurity attacks. In response, the automotive
industry is investing heavily in security software, effectively creating
secure cars. Written by a seasoned automotive expert with international
industry expertise, this book introduces readers to the different types
of security solutions, with the aim of helping software development and
test teams identify vulnerabilities quickly and efficiently. Common
problems and pitfalls, based on real-world experiences, are discussed
and solutions provided. The aim of the book is to assist auto industry
insiders overcome cybersecurity challenges by incorporating security
into their software lifecycle to help build more secure and safe cars"--
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