1. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

ISBN

Descrizione fisica

Disciplina
Soggetti

Lingua di pubblicazione
Formato
Livello bibliografico

Nota di contenuto

UNINA9910829853503321
Oka Dennis Kengo

Building secure cars : assuring the automotive software development
lifecycle / / Dennis Kengo Oka

Hoboken, New Jersey : , : Wiley, , [2021]
©2021

1-119-71077-4
1-119-71078-2
1-119-71076-6

1 online resource (xiii, 304 pages) : illustrations

629.272

Automotive telematics - Security measures
Automotive computers - Programming

Inglese
Materiale a stampa
Monografia

Cover -- Title Page -- Copyright -- Contents -- Preface -- About the
Author -- Chapter 1 Overview of the Current State of Cybersecurity in
the Automotive Industry -- 1.1 Cybersecurity Standards, Guidelines,
and Activities -- 1.2 Process Changes, Organizational Changes, and
New Solutions -- 1.3 Results from a Survey on Cybersecurity Practices
in the Automotive Industry -- 1.3.1 Survey Methods -- 1.3.2 Report
Results -- 1.3.2.1 Organizational Challenges -- 1.3.2.2 Technical
Challenges -- 1.3.2.3 Product Development and Security Testing
Challenges -- 1.3.2.4 Supply Chain and ThirdParty Components
Challenges -- 1.3.3 How to Address the Challenges -- 1.3.3.1
Organizational Takeaways -- 1.3.3.2 Technical Takeaways -- 1.3.3.3
Product Development and Security Testing Takeaways -- 1.3.3.4 Supply
Chain and ThirdParty Components Takeaways -- 1.3.3.5 Getting
Started -- 1.3.3.6 Practical Examples of Organizations Who Have
Started -- 1.3.3.7 -- 1.4 Examples of Vulnerabilities in the Automotive
Industry -- 1.5 Chapter Summary -- References -- Chapter 2
Introduction to Security in the Automotive Software Development
Lifecycle -- 2.1 VModel Software Development Process -- 2.2
Challenges in Automotive Software Development -- 2.3 Security



Solutions at each Step in the VModel -- 2.3.1 Cybersecurity
Requirements Review -- 2.3.2 Security Design Review -- 2.3.3 Threat
Analysis and Risk Assessment -- 2.3.4 Source Code Review -- 2.3.5
Static Code Analysis -- 2.3.6 Software Composition Analysis -- 2.3.7
Security Functional Testing -- 2.3.8 Vulnerability Scanning -- 2.3.9
Fuzz Testing -- 2.3.10 Penetration Testing -- 2.3.11 Incident

Response and Updates -- 2.3.12 Continuous Cybersecurity Activities --
2.3.13 Overall Cybersecurity Management -- 2.4 New Technical
Challenges -- 2.5 Chapter Summary -- References -- Chapter 3
AutomotiveGrade Secure Hardware.

3.1 Need for Automotive Secure Hardware -- 3.2 Different Types of
HSMs -- 3.3 Root of Trust: Security Features Provided by Automotive
HSM -- 3.3.1 Secure Boot -- 3.3.2 Secure InVehicle Communication --
3.3.3 Secure Host Flashing -- 3.3.4 Secure Debug Access -- 3.3.5
Secure Logging -- 3.4 Chapter Summary -- References -- Chapter 4
Need for Automated Security Solutions in the Automotive Software
Development Lifecycle -- 4.1 Main Challenges in the Automotive
Industry -- 4.2 Automated Security Solutions During the Product
Development Phases -- 4.2.1 Static Code Analysis -- 4.2.2 Software
Composition Analysis -- 4.2.3 Security Testing -- 4.2.4 Automation

and Traceability During Software Development -- 4.3 Solutions During
Operations and Maintenance Phases -- 4.3.1 Cybersecurity Monitoring,
Vulnerability Management, Incident Response, and OTA Updates -- 4.4
Chapter Summary -- References -- Chapter 5 Static Code Analysis for
Automotive Software -- 5.1 Introduction to MISRA and AUTOSAR
Coding Guidelines -- 5.2 Problem Statement: MISRA and AUTOSAR
Challenges -- 5.3 Solution: Workflow for Code Segmentation, Guideline
Policies, and Deviation Management -- 5.3.1 Step 1: Segment the
Codebase into Different Categories/Components Based on Risk --
5.3.2 Step 2: Specify Guideline Policies (Set of Guidelines to Apply)
Depending on Risk Categories -- 5.3.3 Step 3: Perform the Scan and
Plan the Approach for Prioritization of Findings -- 5.3.4 Step 4:
Prioritize Findings Based on the Risk Categories and Guideline Policies
and Determine How to Handle Each Finding, e.g. Fix or Leave as
Deviation -- 5.3.5 Step 5: Follow a Defined Deviation Management
Process, Including Approval Steps -- 5.3.6 Step 6: Report on MISRA or
AUTOSAR Coding Guidelines Compliance Including Deviations -- 5.4
Chapter Summary -- References.

Chapter 6 Software Composition Analysis in the Automotive Industry --
6.1 Software Composition Analysis: Benefits and Usage Scenarios --
6.2 Problem Statement: Analysis of Automotive Software OpenSource
Software Risks -- 6.2.1 Analysis Results -- 6.2.1.1 zlib -- 6.2.1.2

libpng -- 6.2.1.3 OpenSSL -- 6.2.1.4 curl -- 6.2.1.5 Linux Kernel --

6.2.2 Discussion -- 6.3 Solution: Countermeasures on Process and
Technical Levels -- 6.3.1 Fully Inventory OpenSource Software -- 6.3.2
Use Appropriate Software Composition Analysis Approaches -- 6.3.3
Map OpenSource Software to Known Security Vulnerabilities -- 6.3.4
Identify License, Quality, and Security Risks -- 6.3.5 Create and Enforce
OpenSource Software Risk Policies -- 6.3.6 Continuously Monitor for
New Security Threats and Vulnerabilities -- 6.3.7 Define and Follow
Processes for Addressing Vulnerabilities in OpenSource Software --
6.3.8 How to Get Started -- 6.4 Chapter Summary -- References --
Chapter 7 Overview of Automotive Security Testing Approaches -- 7.1
Practical Security Testing -- 7.1.1 Security Functional Testing -- 7.1.2
Vulnerability Scanning -- 7.1.3 Fuzz Testing -- 7.1.4 Penetration
Testing -- 7.2 Frameworks for Security Testing -- 7.3 Focus on Fuzz
Testing -- 7.3.1 Fuzz Engine -- 7.3.2 Injector -- 7.3.3 Monitor -- 7.4
Chapter Summary -- References -- Chapter 8 Automating Fuzz Testing



of InVehicle Systems by Integrating with Automotive Test Tools -- 8.1
Overview of HIL Systems -- 8.2 Problem Statement: SUT Requires
External Input and Monitoring -- 8.3 Solution: Integrating Fuzz Testing
Tools with HIL Systems -- 8.3.1 WhiteBox Approach for Fuzz Testing
Using HIL System -- 8.3.1.1 Example Test Setup Using an Engine ECU
-- 8.3.1.2 Fuzz Testing Setup for the Engine ECU -- 8.3.1.3 Fuzz
Testing Setup Considerations -- 8.3.2 BlackBox Approach for Fuzz
Testing Using HIL System.

8.3.2.1 Example Target System Setup Using Engine and Body Control
Modules -- 8.3.2.2 Fuzz Testing Setup Using Duplicate Engine and
Body Control Modules -- 8.3.2.3 Fuzz Testing Setup Considerations --
8.4 Chapter Summary -- References -- Chapter 9 Improving Fuzz
Testing Coverage by Using Agent Instrumentation -- 9.1 Introduction
to Agent Instrumentation -- 9.2 Problem Statement: Undetectable
Vulnerabilities -- 9.2.1 Memory Leaks -- 9.2.2 Core Dumps and
Zombie Processes -- 9.2.3 Considerations for Addressing Undetectable
Vulnerabilities -- 9.3 Solution: Using Agents to Detect Undetectable
Vulnerabilities -- 9.3.1 Overview of the Test Environment -- 9.3.2
Modes of Operation -- 9.3.2.1 Synchronous Mode -- 9.3.2.2
Asynchronous Mode -- 9.3.2.3 Hybrid Approach -- 9.3.3 Examples of
Agents -- 9.3.3.1 AgentCoreDump -- 9.3.3.2 AgentLogTailer --

9.3.3.3 AgentProcessMonitor -- 9.3.3.4 AgentPID -- 9.3.3.5
AgentAddressSanitizer -- 9.3.3.6 AgentValgrind -- 9.3.3.7 An Example
config.json Configuration File -- 9.3.4 Example Results from Agent
Instrumentation -- 9.3.4.1 Bluetooth Fuzz Testing -- 9.3.4.2 WiFi

Fuzz Testing -- 9.3.4.3 MQTT Fuzz Testing -- 9.3.4.4 File Format Fuzz
Testing -- 9.3.5 Applicability and Automation -- 9.4 Chapter Summary
-- References -- Chapter 10 Automating File Fuzzing over USB for
Automotive Systems -- 10.1 Need for File Format Fuzzing -- 10.2
Problem Statement: Manual Process for File Format Fuzzing -- 10.3
Solution: Emulated Filesystems to Automate File Format Fuzzing --
10.3.1 System Architecture Overview -- 10.3.2 Phase One
Implementation Example: Prepare Fuzzed Files -- 10.3.3 Phase Two
Implementation Example: Automatically Emulate Filesystems -- 10.3.4
Automating User Input -- 10.3.5 Monitor for Exceptions -- 10.4
Chapter Summary -- References.

Chapter 11 Automation and Traceability by Integrating Application
Security Testing Tools into ALM Systems -- 11.1 Introduction to ALM
Systems -- 11.2 Problem Statement: Tracing Secure Software
Development Activities and Results to Requirements and Automating
Application Security Testing -- 11.3 Solution: Integrating Application
Security Testing Tools with ALM Systems -- 11.3.1 Concept -- 11.3.1.1
Static Code Analysis - Example -- 11.3.1.2 Software Composition
Analysis - Example -- 11.3.1.3 Vulnerability Scanning - Example --
11.3.1.4 Fuzz Testing - Example -- 11.3.1.5 Concept Overview --
11.3.2 Example Implementation -- 11.3.2.1 Defensics -- 11.3.2.2
codeBeamer ALM -- 11.3.2.3 Jenkins -- 11.3.2.4 SUT -- 11.3.2.5
Implementation Overview -- 11.3.3 Considerations -- 11.4 Chapter
Summary -- References -- Chapter 12 Continuous Cybersecurity
Monitoring, Vulnerability Management, Incident Response, and Secure
OTA Updates -- 12.1 Need for Cybersecurity Monitoring and Secure
OTA Updates -- 12.2 Problem Statement: Software Inventory,
Monitoring Vulnerabilities, and Vulnerable Vehicles -- 12.3 Solution:
Release Management, Monitoring and Tracking, and Secure OTA
Updates -- 12.3.1 Release Management -- 12.3.2 Monitoring and
Tracking -- 12.3.2.1 Solutions in Other Industries -- 12.3.2.2

Solutions in the Automotive Industry -- 12.3.2.3 Example Automotive
SOC Overview -- 12.3.2.4 Example Automotive SOC Workflow --



Sommario/riassunto

12.3.2.5 Newly Detected Vulnerabilities in OpenSource

Software - Example -- 12.3.3 Secure OTA Updates -- 12.3.3.1 Identify
Vulnerable Vehicles Targeted for OTA Updates -- 12.3.3.2 Perform
Secure OTA Updates -- 12.3.3.3 Target Systems for OTA Updates --
12.3.3.4 Overview of Secure OTA Update Process for ECUs -- 12.3.3.5
Standardization and Frameworks for OTA Updates -- 12.4 Chapter
Summary -- References -- Chapter 13 Summary and Next Steps --
Index.

EULA.

"Connectivity and software-based automotive components are now the
norm in motor manufacturing, and there can be more than 100 million
lines of code in a modern car, making the vehicle highly vulnerable to
hacking and other cybersecurity attacks. In response, the automotive
industry is investing heavily in security software, effectively creating
secure cars. Written by a seasoned automotive expert with international
industry expertise, this book introduces readers to the different types
of security solutions, with the aim of helping software development and
test teams identify vulnerabilities quickly and efficiently. Common
problems and pitfalls, based on real-world experiences, are discussed
and solutions provided. The aim of the book is to assist auto industry
insiders overcome cybersecurity challenges by incorporating security
into their software lifecycle to help build more secure and safe cars"--



2. Record Nr. UNISALENT0991004308517907536

Autore Criscuoli, Gabriele

Titolo Prometeo o Il progresso umano : studi critici / Gabriele Criscuoli
Pubbl/distr/stampa Lecce : Tipografia Editrice Salentina, 1938

Descrizione fisica 65p. :ill.; 27 cm

Disciplina 850.9

Soggetti Critica letteraria italiana

Lingua di pubblicazione Italiano

Formato Materiale a stampa

Livello bibliografico Monografia

Note generali Continuazione di: Prometeo o Il progresso umano



