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Finding and mitigating security vulnerabilities in Arm devices is the
next critical internet security frontier-Arm processors are already in use
by more than 90% of all mobile devices, billions of Internet of Things
(IoT) devices, and a growing number of current laptops from companies
including Microsoft, Lenovo, and Apple. Written by a leading expert on
Arm security, Blue Fox: Arm Assembly Internals and Reverse
Engineering introduces readers to modern Armv8-A instruction sets
and the process of reverse-engineering Arm binaries for security
research and defensive purposes. Divided into two sections, the book
first provides an overview of the ELF file format and OS internals,
followed by Arm architecture fundamentals, and a deep-dive into the
A32 and A64 instruction sets. Section Two delves into the process of
reverse-engineering itself: setting up an Arm environment, an
introduction to static and dynamic analysis tools, and the process of
extracting and emulating firmware for analysis. The last chapter
provides the reader a glimpse into macOS malware analysis of binaries
compiled for the Arm-based M1 SoC. Throughout the book, the reader
is given an extensive understanding of Arm instructions and control-
flow patterns essential for reverse engineering software compiled for
the Arm architecture. Providing an in-depth introduction into reverse-
engineering for engineers and security researchers alike, this book:
*Offers an introduction to the Arm architecture, covering both AArch32
and AArch64 instruction set states, as well as ELF file format internals
*Presents in-depth information on Arm assembly internals for reverse
engineers analyzing malware and auditing software for security



vulnerabilities, as well as for developers seeking detailed knowledge of
the Arm assembly language *Covers the A32/T32 and A64 instruction
sets supported by the Armv8-A architecture with a detailed overview of
the most common instructions and control flow patterns *Introduces
known reverse engineering tools used for static and dynamic binary
analysis *Describes the process of disassembling and debugging Arm
binaries on Linux, and using common disassembly and debugging
tools. Blue Fox: Arm Assembly Internals and Reverse Engineering is a
vital resource for security researchers and reverse engineers who
analyze software applications for Arm-based devices at the assembly
level.


