
UNISA9962173625033161. Record Nr.

Titolo Infonomics

Pubbl/distr/stampa Silver Spring, MD, : AIIM International, ©2008-

Descrizione fisica 1 online resource (volumes) : illustrations

Soggetti Business records - Data processing - Management
Electronic records - Management
Records - Management
Information storage and retrieval systems
Enterprise Information Systems
Management Information Systems
Periodicals.

Lingua di pubblicazione Inglese

Formato

Livello bibliografico

Note generali Refereed/Peer-reviewed

Materiale a stampa

Periodico



UNINA99108298526033212. Record Nr.

Titolo Blue fox : arm assembly internals and binary analysis of mobile and IOT
devices / / Maria Markstedter

Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Ltd, , 2023

ISBN 1-394-18920-6

Descrizione fisica 1 online resource (xi, 219 pages) : illustrations

Disciplina 005.265

Soggetti Assembly languages (Electronic computers)
Internet of Things
Embedded computer systems - Programming

Lingua di pubblicazione Inglese

Formato

Livello bibliografico

Nota di contenuto Introduction -- Part I Arm Assembly Internals -- Chapter 1 Introduction
to Reverse Engineering -- Introduction to Assembly -- Bits and Bytes
-- Character Encoding -- Machine Code and Assembly -- Assembling
-- Cross- Assemblers -- High- Level Languages -- Disassembling --
Decompilation -- Chapter 2 ELF File Format Internals -- Program
Structure -- High- Level vs. Low- Level Languages -- The Compilation
Process -- Cross- Compiling for Other Architectures -- Assembling
and Linking -- The ELF File Overview -- The ELF File Header -- The ELF
File Header Information Fields -- The Target Platform Fields -- The
Entry Point Field -- The Table Location Fields -- ELF Program Headers
-- The PHDR Program Header -- The INTERP Program Header -- The
LOAD Program Headers -- The DYNAMIC Program Header -- The NOTE
Program Header -- The TLS Program Header -- The GNU_EH_FRAME
Program Header -- The GNU_STACK Program Header -- The
GNU_RELRO Program Header -- ELF Section Headers -- The ELF Meta-
Sections -- The String Table Section -- The Symbol Table Section --
The Main ELF Sections -- The .text Section -- The .data Section -- The
.bss Section -- The .rodata Section -- The .tdata and .tbss Sections --
Symbols -- Global vs. Local Symbols -- Weak Symbols -- Symbol
Versions -- Mapping Symbols -- The Dynamic Section and Dynamic
Loading -- Dependency Loading (NEEDED) -- Program Relocations --
Static Relocations -- Dynamic Relocations -- The Global Offset Table

Autore Markstedter Maria

Materiale a stampa

Monografia



(GOT) -- The Procedure Linkage Table (PLT) -- The ELF Program
Initialization and Termination Sections -- Initialization and Termination
Order -- Thread- Local Storage -- The Local- Exec TLS Access Model
-- The Initial- Exec TLS Access Model -- The General- Dynamic TLS
Access Model -- The Local- Dynamic TLS Access Model -- Chapter 3
OS Fundamentals -- OS Architecture Overview -- User Mode vs. Kernel
Mode -- Processes -- System Calls -- Objects and Handles -- Threads
-- Process Memory Management -- Memory Pages -- Memory
Protections -- Anonymous and Memory- Mapped Memory -- Memory-
Mapped Files and Modules -- Address Space Layout Randomization --
Stack Implementations -- Shared Memory -- Chapter 4 The Arm
Architecture -- Architectures and Profiles -- The Armv8- A
Architecture -- Exception Levels -- Armv8- A TrustZone Extension --
Exception Level Changes -- Armv8- A Execution States -- The AArch64
Execution State -- The A64 Instruction Set -- AArch64 Registers --
The Program Counter -- The Stack Pointer -- The Zero Register -- The
Link Register -- The Frame Pointer -- The Platform Register (x18) --
The Intraprocedural Call Registers -- SIMD and Floating- Point
Registers -- System Registers -- PSTATE -- The AArch32 Execution
State -- A32 and T32 Instruction Sets -- The A32 Instruction Set --
The T32 Instruction Set -- Switching Between Instruction Sets --
AArch32 Registers -- The Program Counter -- The Stack Pointer -- The
Frame Pointer -- The Link Register -- The Intraprocedural Call Register
(IP, r12) -- The Current Program Status Register -- The Application
Program Status Register -- The Execution State Registers -- The
Instruction Set State Register -- The IT Block State Register (ITSTATE)
-- Endianness state -- Mode and Exception Mask Bits -- Chapter 5
Data Processing Instructions -- Shift and Rotate Operations -- Logical
Shift Left -- Logical Shift Right -- Arithmetic Shift Right -- Rotate Right
-- Rotate Right with Extend -- Instruction Forms -- Shift by a Constant
Immediate Form -- Shift by Register Form -- Bitfield Manipulation
Operations -- Bitfield Move -- Sign- and Zero- Extend Operations --
Bitfield Extract and Insert -- Logical Operations -- Bitwise AND The
TST Instruction -- Bitwise Bit Clear -- Bitwise OR Bitwise OR NOT
Bitwise Exclusive OR The TEQ instruction Exclusive OR NOT Arithmetic
Operations Addition and Subtraction -- Reverse Subtract -- Compare
CMP Instruction Operation Behavior -- Multiplication Operations --
Multiplications on A64 -- Multiplications on A32/T32 -- Least
Significant Word Multiplications -- Most Significant Word
Multiplications -- Halfword Multiplications -- Vector (Dual)
Multiplications -- Long (64- Bit) Multiplications -- Division Operations
-- Move Operations -- Move Constant Immediate -- Move Immediate
and MOVT on A32/T32 -- Move Immediate, MOVZ, and MOVK on A64
-- Move Register -- Move with NOT -- Chapter 6 Memory Access
Instructions -- Instructions Overview -- Addressing Modes and Offset
Forms -- Offset Addressing -- Constant Immediate Offset -- Register
Offsets -- Pre- Indexed Mode -- Pre- Indexed Mode Example -- Post-
Indexed Addressing -- Post- Indexed Addressing Example -- Literal
(PC- Relative) Addressing -- Loading Constants -- Loading an Address
into a Register -- Load and Store Instructions -- Load and Store Word
or Doubleword -- Load and Store Halfword or Byte -- Example Using
Load and Store -- Load and Store Multiple (A32) -- Example for STM
and LDM -- A More Complicated Example Using STM and LDM -- Load
and Store Pair (A64) -- Chapter 7 Conditional Execution -- Conditional
Execution Overview -- Conditional Codes -- The NZCV Condition Flags
-- Signed vs. Unsigned Integer Overflows -- Condition Codes --
Conditional Instructions -- The If- Then (IT) Instruction in Thumb --
Flag- Setting Instructions -- The Instruction "S" Suffix -- The S Suffix



Sommario/riassunto

on Add and Subtract Instructions -- The S Suffix on Logical Shift
Instructions -- The S Suffix on Multiply Instructions -- The S Suffix on
Other Instructions -- Test and Comparison Instructions -- Compare
(CMP) -- Compare Negative (CMN) -- Test Bits (TST) -- Test Equality
(TEQ) -- Conditional Select Instructions -- Conditional Comparison
Instructions -- Boolean AND Conditionals Using CCMP -- Boolean OR
Conditionals Using CCMP -- Chapter 8 Control Flow -- Branch
Instructions -- Conditional Branches and Loops -- Test and Compare
Branches -- Table Branches (T32) -- Branch and Exchange --
Subroutine Branches -- Functions and Subroutines -- The Procedure
Call Standard -- Volatile vs. Nonvolatile Registers -- Arguments and
Return Values -- Passing Larger Values -- Leaf and Nonleaf Functions
-- Leaf Functions -- Nonleaf Functions -- Prologue and Epilogue --
Part II Reverse Engineering -- Chapter 9 Arm Environments -- Arm
Boards -- Emulation with QEMU -- QEMU User- Mode Emulation --
QEMU Full- System Emulation -- Firmware Emulation -- Chapter 10
Static Analysis -- Static Analysis Tools -- Command- Line Tools 322
Disassemblers and Decompilers -- Binary Ninja Cloud -- Call- By-
Reference Example -- Control Flow Analysis -- Main Function --
Subroutine -- Converting to char if Statement -- Quotient Division for
Loop -- Analyzing an Algorithm -- Chapter 11 Dynamic Analysis --
Command- Line Debugging -- GDB Commands -- GDB Multiuser --
GDB Extension: GEF -- Installation -- Interface -- Useful GEF
Commands -- Examine Memory -- Watch Memory Regions --
Vulnerability Analyzers -- checksec -- Radare2 -- Debugging --
Remote Debugging -- Radare2 -- IDA Pro -- Debugging a Memory
Corruption -- Debugging a Process with GDB -- Chapter 12 Reversing
arm64 macOS Malware -- Background -- macOS arm64 Binaries macOS
Hello World (arm64) -- Hunting for Malicious arm64 Binaries --
Analyzing arm64 Malware -- Anti- Analysis Techniques -- Anti-
Debugging Logic (via ptrace) -- Anti- Debugging Logic (via sysctl) --
Anti- VM Logic (via SIP Status and the Detection of VM Artifacts) --
Conclusion -- Index.
Finding and mitigating security vulnerabilities in Arm devices is the
next critical internet security frontier-Arm processors are already in use
by more than 90% of all mobile devices, billions of Internet of Things
(IoT) devices, and a growing number of current laptops from companies
including Microsoft, Lenovo, and Apple. Written by a leading expert on
Arm security, Blue Fox: Arm Assembly Internals and Reverse
Engineering introduces readers to modern Armv8-A instruction sets
and the process of reverse-engineering Arm binaries for security
research and defensive purposes. Divided into two sections, the book
first provides an overview of the ELF file format and OS internals,
followed by Arm architecture fundamentals, and a deep-dive into the
A32 and A64 instruction sets. Section Two delves into the process of
reverse-engineering itself: setting up an Arm environment, an
introduction to static and dynamic analysis tools, and the process of
extracting and emulating firmware for analysis. The last chapter
provides the reader a glimpse into macOS malware analysis of binaries
compiled for the Arm-based M1 SoC. Throughout the book, the reader
is given an extensive understanding of Arm instructions and control-
flow patterns essential for reverse engineering software compiled for
the Arm architecture. Providing an in-depth introduction into reverse-
engineering for engineers and security researchers alike, this book:
*Offers an introduction to the Arm architecture, covering both AArch32
and AArch64 instruction set states, as well as ELF file format internals
*Presents in-depth information on Arm assembly internals for reverse
engineers analyzing malware and auditing software for security



vulnerabilities, as well as for developers seeking detailed knowledge of
the Arm assembly language *Covers the A32/T32 and A64 instruction
sets supported by the Armv8-A architecture with a detailed overview of
the most common instructions and control flow patterns *Introduces
known reverse engineering tools used for static and dynamic binary
analysis *Describes the process of disassembling and debugging Arm
binaries on Linux, and using common disassembly and debugging
tools. Blue Fox: Arm Assembly Internals and Reverse Engineering is a
vital resource for security researchers and reverse engineers who
analyze software applications for Arm-based devices at the assembly
level.


