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The design of application programming interfaces can affect the
behavior, capabilities, stability, and ease of use of end-user
applications. With this book, you will learn how to design a good API for
large-scale long-term projects. With extensive C++ code to illustrate
each concept, API Design for C++ covers all of the strategies of world-
class API development. Martin Reddy draws on over fifteen years of
experience in the software industry to offer in-depth discussions of
interface design, documentation, testing, and the advanced topics of
scripting and plug-in extensibility.


