Record Nr.	UNINA9910828574703321
Autore	Forrester Peter (Peter John)
Titolo	Log-gases and random matrices / / P.J. Forrester
Pubbl/distr/stampa	Princeton, : Princeton University Press, c2010
ISBN	1-282-64174-3
	9786612641749
	1-4008-3541-0
Edizione	[Course Book]
Descrizione fisica	1 online resource (806 p.)
Collana	London Mathematical Society monographs
Disciplina	519.2
	Dia.2
Soggetti	lacobi polynomials
	Integral theorems
Lingua di pubblicazione	
Formato	Materiale a stampa
	Monografia
Note generali	Description based upon print version of record.
Nota di bibliografia	Includes bibliographical references and index.
Nota di contenuto	Frontmatter Preface Contents Chapter One. Gaussian Matrix
	Ensembles Chapter Two. Circular Ensembles Chapter Three.
	Chapter Five. Correlation functions at $= 2$ Chapter Six.
	Correlation Functions At = 1 And 4 Chapter Seven. Scaled limits at
	= 1, 2 and 4 Chapter Light. Ligenvalue probabilities - Painleve
	determinant approach Chapter Ten. Lattice paths and growth
	models Chapter Eleven. The Calogero-Sutherland model Chapter
	Twelve. Jack polynomials Chapter Thirteen. Correlations for general
	correlations Chapter Fifteen. The two-dimensional one-component
	plasma Bibliography Index
Sommario/riassunto	Random matrix theory, both as an application and as a theory, has
	evolved rapidly over the past fifteen years. Log-Gases and Random
	emphasizing log-gases as a physical picture and heuristic as well as
	covering topics such as beta ensembles and Jack polynomials. Peter
	Forrester presents an encyclopedic development of log-gases and
	random matrices viewed as examples of integrable or exactly solvable

1.

systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory, but also of the Laguerre and Jacobi ensembles, and their beta extensions. Prominence is given to the computation of a multitude of Jacobians; determinantal point processes and orthogonal polynomials of one variable; the Selberg integral, Jack polynomials, and generalized hypergeometric functions; Painlevé transcendents; macroscopic electrostatistics and asymptotic formulas; nonintersecting paths and models in statistical mechanics; and applications of random matrix theory. This is the first textbook development of both nonsymmetric and symmetric Jack polynomial theory, as well as the connection between Selberg integral theory and beta ensembles. The author provides hundreds of guided exercises and linked topics, making Log-Gases and Random Matrices an indispensable reference work, as well as a learning resource for all students and researchers in the field.