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Quasicrystals are non-periodic solids that were discovered in 1982 by
Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The
underlying mathematics, known as the theory of aperiodic order, is the
subject of this comprehensive multi-volume series. This first volume
provides a graduate-level introduction to the many facets of this
relatively new area of mathematics. Special attention is given to
methods from algebra, discrete geometry and harmonic analysis, while
the main focus is on topics motivated by physics and crystallography.
In particular, the authors provide a systematic exposition of the
mathematical theory of kinematic diffraction. Numerous illustrations
and worked-out examples help the reader to bridge the gap between
theory and application. The authors also point to more advanced topics
to show how the theory interacts with other areas of pure and applied
mathematics.


