Record Nr.	UNINA9910824562603321
Autore	Rohde Ulrich L
Titolo	The design of modern microwave oscillators for wireless applications : theory and optimization / / Ulrich L. Rohde, Ajay Kumar Poddar, and Georg Bock
Pubbl/distr/stampa	Hoboken, NJ, : J. Wiley, 2005
ISBN	1-280-27577-4 9786610275779 0-470-36228-6 0-471-72717-2 0-471-72716-4
Edizione	[1st ed.]
Descrizione fisica	1 online resource (561 p.)
Altri autori (Persone)	PoddarAjay Kumar <1967-> BockGeorg <1951->
Disciplina	621.381/323
Soggetti	Oscillators, Microwave Wireless communication systems - Equipment and supplies
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	Description based upon print version of record.
Nota di bibliografia	Includes bibliographical references and index.

1.

	Noise; 7.2 The Lee and Hajimiri Noise Model 7.3 Nonlinear Approach to the Calculation of Oscillator Phase Noise7.4 Phase Noise Measurements; 7.5 Support Circuits; 8 Calculation and Optimization of Phase Noise in Oscillators; 8.1 Introduction; 8.2 Oscillator Configurations; 8.3 Oscillator Phase Noise Model for the Synthesis Procedure; 8.4 Phase Noise Analysis Based on the Negative Resistance Model; 8.5 Phase Noise Analysis Based on the Feedback Model; 8.6 2400 MHz MOSFET-Based Push-Pull Oscillator; 8.7 Phase Noise, Biasing, and Temperature Effects; 9 Validation Circuits; 9.1 1000 MHz CRO 9.2 4100 MHz Oscillator with Transmission Line Resonators9.3 2000 MHz GaAs FET-Based Oscillator; 9.4 77 GHz SiGe Oscillator; 9.5 900- 1800 MHz Half-Butterfly Resonator-Based Oscillator; 10 Systems of Coupled Oscillators; 10.1 Mutually Coupled Oscillators Using the Classical Pendulum Analogy; 10.2 Phase Condition for Mutually Locked (Synchronized) Coupled Oscillators; 10.3 Dynamics of Coupled Oscillators; 10.4 Dynamics of N-Coupled (Synchronized) Oscillators; 10.5 Oscillator Noise; 10.6 Noise Analysis of the Uncoupled Oscillator 10.7 Noise Analysis of Mutually Coupled (Synchronized) Oscillators 10.8 Noise Analysis of N-Coupled (Synchronized) Oscillators 10.8 Noise Analysis of N-Coupled (Synchronized) Oscillators 10.7 Noise Analysis of N-Coupled (Synchronized) Oscillators 10.8 Noise Analysis of N-Coupled (Synchronized) Oscillators 10.7 Noise Analysis of N-Coupled (Synchronized) Oscillators 10.8 Noise Analysis of N-Coupled (Synchronized) Oscillators 10.7 Noise Analysis of N-Coupled (Synchronized) Oscillator; 11.2 1000-2000/2000-4000 MHz Push-Push Oscillator; 11.3 1500- 3000/3000-6000 MHz Dual Coupled Resonator Oscillator; 11.4 1000- 2000/2000-4000 MHz Hybrid Tuned VCO; References; Appendix A Design of an Oscillator Using Large-Signal Design Based on Bessel Functions
Sommario/riassunto	Delivering the best possible solution for phase noise and output power efficiency in oscillatorsThis complete and thorough analysis of microwave oscillators investigates all aspects of design, with particular emphasis on operating conditions, choice of resonators and transistors, phase noise, and output power. It covers both bipolar transistors and FETs. Following the authors' guidance, readers learn how to design microwave oscillators and VCOs that can be tuned over a very wide frequency range, yet have good phase noise, are low cost, and are small in size. All the essential topics in osc