1. Record Nr.
Autore
Titolo

Pubbl/distr/stampa
ISBN

Edizione
Descrizione fisica

Classificazione

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia
Nota di contenuto

UNINA9910824075303321
Tourlakis George J
Theory of computation / / George Tourlakis

Hoboken, N.J., : Wiley, 2012

1-280-59246-X
9786613622297
1-118-31535-9
1-118-31536-7
1-118-31533-2

[1st ed.]
1 online resource (410 p.)

MATO008000

511.3/52

Computable functions
Functional programming languages

Inglese

Materiale a stampa

Monografia

Description based upon print version of record.
Includes bibliographical references and index.

Theory of Computation; CONTENTS; Preface; 1 Mathematical
Foundations; 1.1 Sets and Logic; Naively; 1.1.1 A Detour via Logic;
1.1.2 Sets and their Operations; 1.1.3 Alphabets, Strings and
Languages; 1.2 Relations and Functions; 1.3 Big and Small Infinite Sets;
Diagonalization; 1.4 Induction from a User's Perspective; 1.4.1
Complete, or Course-of-Values, Induction; 1.4.2 Simple Induction;

1.4.3 The Least Principle; 1.4.4 The Equivalence of Induction and the
Least Principle; 1.5 Why Induction Ticks; 1.6 Inductively Defined Sets;
1.7 Recursive Definitions of Functions; 1.8 Additional Exercises

2 Algorithms, Computable Functions and Computations 2.1 A Theory of
Computability; 2.1.1 A Programming Framework for Computable
Functions; 2.1.2 Primitive Recursive Functions; 2.1.3 Simultaneous
Primitive Recursion; 2.1.4 Pairing Functions; 2.1.5 Iteration; 2.2 A
Programming Formalism for the Primitive Recursive Functions; 2.2.1 PR
vs. L; 2.2.2 Incompleteness of PR; 2.3 URM Computations and their
Arithmetization; 2.4 A Double Recursion that Leads Outside the
Primitive Recursive Function Class; 2.4.1 The Ackermann Function;
2.4.2 Properties of the Ackermann Function

2.4.3 The Ackermann Function Majorizes All the Functions of PR 2.4.4



Sommario/riassunto

The Graph of the Ackermann Function is in PR*; 2.5 Semi-computable
Relations; Unsolvability; 2.6 The Iteration Theorem of Kleene; 2.7
Diagonalization Revisited; Unsolvability via Reductions; 2.7.1 More
Diagonalization; 2.7.2 Reducibility via the S-m-n Theorem; 2.7.3 More
Dovetailing; 2.7.4 Recursive Enumerations; 2.8 Productive and Creative
Sets; 2.9 The Recursion Theorem; 2.9.1 Applications of the Recursion
Theorem; 2.10 Completeness; 2.11 Unprovability from Unsolvability

3.5 Additional Exercises 4 Adding a Stack to a NFA: Pushdown
Automata; 4.1 The PDA; 4.2 PDA Computations; 4.2.1 ES vs AS vs
ES+AS; 4.3 The PDA-acceptable Languages are the Context Free
Languages; 4.4 Non Context Free Languages; Another Pumping
Lemma; 4.5 Additional Exercises; 5 Computational Complexity; 5.1
Adding a Second Stack; Turing Machines; 5.1.1 Turing Machines; 5.1.2
N P-Completeness; 5.1.3 Cook's Theorem; 5.2 Axt, Loop Program, and
Grzegorczyk Hierarchies; 5.3 Additional Exercises; Bibliography; Index

"In the (meta)theory of computing, the fundamental questions of the
limitations of computing are addressed. These limitations, which are
intrinsic rather than technology dependent, may immediately rule out
the existence of algorithmic solutions for some problems while for
others they rule out efficient solutions. The author's approach is
anchored on the concrete (and assumed) practical knowledge about
general computer programming, attained readers in a first year
programming course, as well as the knowledge of discrete mathematics
at the same level. The book develops the meta-theory of general
computing and builds on the reader's prior computing experience.
Metatheory via the programming formalism known as Shepherdson-
Sturgis Unbounded Register Machines (URM)--a straightforward
abstraction of modern high level programming languages--is
developed. Restrictions of the URM programming language are also
discussed. The author has chosen to focus on the high level language
approach of URMs as opposed to the Turing Machine since URMs relate
more directly to programming learned in prior experiences. The author
presents the topics of automata and languages only after readers
become familiar, to some extent, with the (general) computability
theory including the special computability theory of more "practical”
functions, the primitive recursive functions. Automata are presented as
a very restricted programming formalism, and their limitations (in
expressivity) and their associated languages are studied. In addition,
this book contains tools that, in principle, can search a set of
algorithms to see whether a problem is solvable, or more specifically, if
it can be solved by an algorithm whose computations are efficient.
Chapter coverage includes: Mathematical Background; Algorithms,
Computable Functions, and Computations; A Subset of the URM
Language: FA and NFA; and Adding a Stack to an NFA: Pushdown
Automata”--

"The book develops the meta-theory of general computing and builds
on the reader's prior computing experience. Metatheory via the
programming formalism known as Shepherdson-Sturgis Unbounded
Register Machines (URM)--a straightforward abstraction of modern
high-level programming languages--is developed. Restrictions of the
URM programming language are also discussed. The author has chosen
to focus on the high-level language approach of URMs as opposed to
the Turing Machine since URMs relate more directly to programming
learned in prior experiences"--



