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"In the (meta)theory of computing, the fundamental questions of the
limitations of computing are addressed. These limitations, which are
intrinsic rather than technology dependent, may immediately rule out
the existence of algorithmic solutions for some problems while for
others they rule out efficient solutions. The author's approach is
anchored on the concrete (and assumed) practical knowledge about
general computer programming, attained readers in a first year
programming course, as well as the knowledge of discrete mathematics
at the same level. The book develops the meta-theory of general
computing and builds on the reader's prior computing experience.
Metatheory via the programming formalism known as Shepherdson-
Sturgis Unbounded Register Machines (URM)--a straightforward
abstraction of modern high level programming languages--is
developed. Restrictions of the URM programming language are also
discussed. The author has chosen to focus on the high level language
approach of URMs as opposed to the Turing Machine since URMs relate
more directly to programming learned in prior experiences. The author
presents the topics of automata and languages only after readers
become familiar, to some extent, with the (general) computability
theory including the special computability theory of more "practical”
functions, the primitive recursive functions. Automata are presented as
a very restricted programming formalism, and their limitations (in
expressivity) and their associated languages are studied. In addition,
this book contains tools that, in principle, can search a set of
algorithms to see whether a problem is solvable, or more specifically, if
it can be solved by an algorithm whose computations are efficient.
Chapter coverage includes: Mathematical Background; Algorithms,
Computable Functions, and Computations; A Subset of the URM
Language: FA and NFA; and Adding a Stack to an NFA: Pushdown
Automata”--

"The book develops the meta-theory of general computing and builds
on the reader's prior computing experience. Metatheory via the
programming formalism known as Shepherdson-Sturgis Unbounded
Register Machines (URM)--a straightforward abstraction of modern
high-level programming languages--is developed. Restrictions of the
URM programming language are also discussed. The author has chosen
to focus on the high-level language approach of URMs as opposed to
the Turing Machine since URMs relate more directly to programming
learned in prior experiences"--



