1. Record Nr.

Autore
Titolo

Pubbl/distr/stampa
ISBN

Edizione
Descrizione fisica

Disciplina

Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia
Nota di contenuto

UNINA9910823083203321
Karris Steven T
Introduction to stateflow with applications / / Steven T. Karris

Fremont, CA, : Orchard Publications, 2007

1-280-95526-0
9786610955268
1-934404-08-X

[1st ed.]
iv, (522) p

620.001/13
Computer software - Development

Inglese

Materiale a stampa

Monografia

Title from title screen.

Includes bibliographical references and index.

Intro -- Preface -- Table of Contents -- Chapter 1 -- 1.1 Finite State
Machines -- 1.2 Event-Driven Systems -- 1.3 Construction of Finite-
State Machines with Stateflow -- 1.4 Procedure for Creating a Stateflow
Chart -- 1.5 Summary -- 1.6 Exercise for the Reader -- 1.7 Solution to
the End-of-Chapter Exercise -- Chapter 2 -- 2.1 Truth Tables in
Stateflow -- 2.2 Summary -- 2.3 Exercises -- 2.4 Solution to End-of-
Chapter Exercises -- Chapter 3 -- 3.1 Introduction to Embedded
MATLAB Functions -- 3.2 Building the Model with a Stateflow
Embedded MATLAB Function -- 3.3 Programming the Stateflow Chart
with an Embedded MATLAB Function -- 3.4 Simulation of the Matrix
Operations Stateflow Chart -- 3.5 Summary -- 3.6 Exercises for the
Reader -- 3.7 Solution to the End-of-Chapter Exercises -- Chapter 4

-- 4.1 Introduction to Embedded MATLAB Functions -- 4.2 Summary
-- 4.3 Exercises for the Reader -- 4.4 Solution to the End-of-Chapter
Exercises -- Chapter 5 -- 5.1 Introduction to Graphical Functions --
5.2 Creating a Graphical Function -- 5.3 Subcharts -- 5.4 Exporting
Graphical Functions to Stateflow -- 5.5 Summary -- 5.6 Exercise for
the Reader -- 5.7 Solution to the End-of-Chapter Exercise -- Chapter 6
-- 6.1 The Stateflow Connective Junction Tool -- 6.2 Creating a
Connective Junction -- 6.3 Changing Connective Junction Size -- 6.4
Changing Connective Junction Properties -- 6.5 Uses of Connective
Junctions -- 6.6 Summary -- 6.7 Exercise for the Reader -- 6.8

Solution to the End-of-Chapter Exercise -- Chapter 7 -- 7.1 History
Junction Defined -- 7.2 The Stateflow History Junction Tool -- 7.3
Changing the History Junction Size -- 7.4 Changing History Junction
Properties -- 7.5 Entering a State -- 7.6 Executing an Active State --
7.7 Exiting an Active State -- 7.8 Execution Order for Parallel States --
7.9 Transitions -- 7.10 Transition Connections.

7.11 Inner Transitions -- 7.12 Summary -- 7.13 Exercise for the
Reader -- 7.14 Solution to the End-of-Chapter Exercise -- Chapter 8

-- 8.1 Creating a Box -- 8.2 Changing a State to a Box -- 8.3 Using
Boxes in Stateflow -- 8.4 Summary -- Chapter 9 -- 9.1 Mealy Machine
Defined -- 9.2 Moore Machine Defined -- 9.3 Mealy and Moore
Machines in Stateflow -- 9.4 Creating a Mealy Chart -- 9.5 Creating a
Moore Chart -- 9.6 Changing Chart Type -- 9.7 Debugging Mealy and
Moore Charts -- 9.8 Summary -- 9.9 Exercises for the Reader -- 9.10
Solution to the End-of-Chapter Exercises -- Appendix A -- A.1
MATLAB® and Simulink® -- A.2 Command Window -- A.3 Roots of
Polynomials -- A.4 Polynomial Construction from Known Roots -- A.5
Evaluation of a Polynomial at Specified Values -- A.6 Rational
Polynomials -- A.7 Using MATLAB to Make Plots -- A.8 Subplots -- A.9
Multiplication, Division, and Exponentiation -- A.10 Script and Function
Files -- A.11 Display Formats -- Appendix B -- B.1 Simulink and its
Relation to MATLAB -- B.2 Simulink Demos -- Appendix C -- Masked
Subsystems -- his appendix presents an overview of masked
subsystems, and a step-by-step procedure to create custom user
interfaces, i.e., masks for Simulink subsystems. -- C.1 Masks Defined
-- A mask is a custom user interface for a subsystem. A masked
subsystem conceals the subsystem's contents, and it appear to the user
as an atomic block with its own icon and parameter dialog box.
However, a masked subsystem provides only graphi... -- C.2
Advantages Using Masked Subsystems -- A masked subsystem allows
us to -- 1. Replace the parameter dialogs of a subsystem and its
contents with a single parameter dialog with its own block description,
parameter prompts, and help text. -- 2. Replace a subsystem's
standard icon with a custom icon that shows its purpose.

3. Prevent accidental modification of subsystems by concealing their
contents behind a mask. -- 4. Placing a masked subsystem in a library.
We can also mask S-Function and Model blocks. -- C.3 Mask Features
-- Masks can include any of the following features: -- Mask Icon - The
mask icon replaces a subsystem's standard icon, i.e., it appears in a
block diagram in place of the standard icon for a subsystem block.
Simulink uses MATLAB code that we supply to draw the custom icon.
We can use any MATLAB d... -- Mask Parameters - Masked subsystems
allow us to define a set of user-specified parameters. Simulink stores
the values of these parameters in the mask workspace as the value of a
variable whose name you specify. These associated variables allo... --
Mask Parameter Dialog Box - The mask parameter dialog box contains
controls that enable a user to set the values of the mask's parameters
and hence the values of any internal parameters linked to the mask
parameters. The mask parameter dialog... -- Mask Initialization Code -
The initialization code is MATLAB code that you specify and that
Simulink runs to initialize the masked subsystem at critical times, such
as model loading and the start of a simulation run (see Initialization
Pane).... -- Mask Workspace - Simulink associates a workspace with
each masked subsystem that you create. Simulink stores the current
values of the subsystem's parameters in the workspace as well as any
variables created by the block's initialization code... -- A block
parameter expression can refer only to variables defined in the mask
workspaces of the subsystem or nested subsystems that contain the

block or in the model's workspace. -- A valid reference to a variable
defined on more than one level in the model hierarchy resolves to the
most local definition.

For example, let us suppose that model M contains masked subsystem
A, which contains masked subsystem B. Also, let us suppose that B
refers to a variable x that exists in both A's and M's workspaces. In this
case, the reference resolves to th... -- A masked subsystem's
initialization code can refer only to variables in its local workspace. --
The mask workspace of a Model block is not visible to the model that it
references. Any variables used by the referenced model must resolve to
workspaces defined in the referenced model or to the base (i.e., the
MATLAB) workspace. -- C.4 Creating a Masked Subsystem -- It is best
to illustrate the creation of a masked subsystem with an example. --
Example C.1 -- The Simulink model in Figure C.1 below implements
the quadratic equation . -- Figure C.1. Simulink model for Example C.1
-- To create a subsystem, we encircle all blocks except the Unknown x
and Display blocks, and from the Edit drop menu we select Create
Subsystem. The model now appears as shown in Figure C.2. -- Figure
C.2. The model for Example C.1 shown as a subsystem block -- To see
the contents of the Subsystem in Figure C.2, we double-click the
Subsystem block and now the model appears as shown in Figure C.3.
-- Figure C.3. The contents of the subsystem block -- From the Edit
drop menu we click on the Mask Subsystem and the Mask Editor
window appears as shown in Figure C.4. With the Icon tab selected as
shown in Figure C.4, we position the text cursor in the Drawing
commands pane, and we enter the MA... -- Figure C.4. The Mask Editor
window for Example c.1 -- Figure C.5. The masked subsystem with an
imported image -- We right-click on the Subsystem block in Figure C.

5, and from the drop menu we select Edit Mask. From the Mask Editor
window which appears, we select the Parameters tab shown in Fig ure
C.6 below.

Figure C.6. The Parameters tab for the Mask Editor window -- We select
the Add tool and the Mask Editor window now appears as shown in
Figure C.7. -- Figure C.7. The Mask Editor window for specifying the
attributes of the masked parameters -- The Mask Editor in Figure C.7 is
used to specify the attributes of the masked parameters. The Prompt
column under Dialog parameters is used as a text label to describe the
parameter. For our example we enter Constant a, Constant b, and
Consta... -- Figure C.8. The Masked Editor with the equation constants
specified -- We right-click on the masked subsystem block shown in
Figure C.5, Page C-5, and in the Func tion Block Parameters dialog box
we enter the values 1, -5, and 6 for the variables a, b, and c
respectively, as shown in Figure C.9. -- Figure C.9. The Function Block
Parameters window with the values of the constants -- With the
variables defined as above, the masked subsystem implements the
quadratic equation -- and the roots of this equation are and . Our

model is tested for the first root as shown in Figure C.10. -- Figure C.
10. -- The Mask Editor also contains the Initialization tab that allows us
to enter MATLAB commands that initialize the masked subsystem, and
the Documentation tab that lets us define or modify the type
description and help text for a masked subsyst... -- Figure C.11. The
Initialization tab for the Mask Editor Window -- Figure C.12. The
Documentation tab for the Mask Editor window. -- References and
Suggestions for Further Study -- Index.

