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Types are the central organizing principle of the theory of
programming languages. In this innovative book, Professor Robert
Harper offers a fresh perspective on the fundamentals of these
languages through the use of type theory. Whereas most textbooks on
the subject emphasize taxonomy, Harper instead emphasizes genetics,
examining the building blocks from which all programming languages
are constructed. Language features are manifestations of type
structure. The syntax of a language is governed by the constructs that
define its types, and its semantics is determined by the interactions
among those constructs. The soundness of a language design - the
absence of ill-defined programs - follows naturally. Professor Harper's
presentation is simultaneously rigorous and intuitive, relying on
elementary mathematics. The framework he outlines scales easily to a
rich variety of language concepts and is directly applicable to their
implementation. The result is a lucid introduction to programming
theory that is both accessible and practical.


