
UNINA99108221216033211. Record Nr.

Titolo Practical foundations for programming languages / / Robert Harper
[[electronic resource]]

Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2013

ISBN 1-107-23730-0
1-107-25486-8
1-107-30175-0
1-107-30684-1
1-107-30904-2
1-107-31459-3
1-139-34213-4

Descrizione fisica 1 online resource (xviii, 471 pages) : digital, PDF file(s)

Classificazione COM051010

Disciplina 005.13

Soggetti Programming languages (Electronic computers)

Lingua di pubblicazione Inglese

Formato

Livello bibliografico

Note generali Title from publisher's bibliographic system (viewed on 05 Oct 2015).

Nota di bibliografia

Nota di contenuto

Includes bibliographical references and index.

Machine generated contents note: Part I. Judgments and Rules: 1.
Inductive definitions; 2. Hypothetical judgments; 3. Syntactic objects; 4.
Generic judgments; Part II. Levels of Syntax: 5. Concrete syntax; 6.
Abstract syntax; Part III. Statics and Dynamics: 7. Statics; 8. Dynamics;
9. Type safety; 10. Evaluation dynamics; Part IV. Function Types: 11.
Function definitions and values; 12. Godel's system T; 13. Plotkin's PCF;
Part V. Finite Data Types: 14. Product types; 15. Sum patterns; 16.
Pattern matching; 17. Generic programming; Part VI. Infinite Data
Types: 18. Inductive and co-inductive types; 19. Recursive types; Part
VII. Dynamic Types: 20. The untyped 1-calculus; 21. Dynamic typing;
22. Hybrid typing; Part VIII. Variable Types: 23. Girard's system F; 24.
Abstract types; 25. Constructors and kinds; 26. Indexed families of
types; Part IX. Subtyping: 27. Subtyping; 28. Singleton and dependent
kinds; Part X. Classes and Methods: 29. Dynamic dispatch; 30.
Inheritance; Part XI. Control Effects: 31. Control stacks; 32. Exceptions;
33. Continuations; Part XII. Types and Propositions: 34. Constructive
logic; 35. Classical logic; Part XIII. Symbols: 36. Symbols; 37. Fluid

Autore Harper Robert <1957->

Materiale a stampa

Monografia



Sommario/riassunto

binding; 38. Dynamic classification; Part XIV. Storage Effects: 39.
Modernized algol; 40. Mutable data structures; Part XV. Laziness: 41.
Lazy evaluation; 42. Polarization; Part XVI. Parallelism: 43. Nested
parallelism; 44. Futures and speculation; Part XVII. Concurrency: 45.
Process calculus; 46. Current algol; 47. Distributed algol; Part XVIII.
Modularity: 48. Separate compilation and linking; 49. Basic modules;
50. Parameterized modules; Part XIX. Equivalence: 51. Equational
reasoning for T; 52. Equational reasoning for PCF; 53. Parametricity.
Types are the central organizing principle of the theory of
programming languages. In this innovative book, Professor Robert
Harper offers a fresh perspective on the fundamentals of these
languages through the use of type theory. Whereas most textbooks on
the subject emphasize taxonomy, Harper instead emphasizes genetics,
examining the building blocks from which all programming languages
are constructed. Language features are manifestations of type
structure. The syntax of a language is governed by the constructs that
define its types, and its semantics is determined by the interactions
among those constructs. The soundness of a language design - the
absence of ill-defined programs - follows naturally. Professor Harper's
presentation is simultaneously rigorous and intuitive, relying on
elementary mathematics. The framework he outlines scales easily to a
rich variety of language concepts and is directly applicable to their
implementation. The result is a lucid introduction to programming
theory that is both accessible and practical.


