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The existing literature currently available to students and researchers is
very general, covering only the formal techniques of static analysis.
This book presents real examples of the formal techniques called
abstract interpretation™ currently being used in various industrial
fields: railway, aeronautics, space, automotive, etc. The purpose of this
book is to present students and researchers, in a single book, with the
wealth of experience of people who are intrinsically involved in the
realization and evaluation of software-based safety critical systems. As
the authors are people curr
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