1. Record Nr.

Titolo

Pubbl/distr/stampa
ISBN

Edizione
Descrizione fisica

Collana

Altri autori (Persone)
Disciplina

Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia
Nota di contenuto

UNINA9910821368103321

Static analysis of software : the abstract interpretation / / edited by
Jean-Louis Boulanger

Hoboken, N.J., : Wiley, 2012

9781118602867
1118602862
9781118602959
1118602951
9781118602843
1118602846
9781299187788
1299187781

[1st ed.]
1 online resource (347 p.)
ISTE

BoulangerJean-Louis

005.1/4

Computer software - Testing
Debugging in computer science
Computer software - Quality control

Inglese

Materiale a stampa

Monografia

Description based upon print version of record.
Includes bibliographical references and index.

Cover; Title Page; Copyright Page; Table of Contents; Introduction;
Chapter 1. Formal Techniques for Verification and Validation; 1.1.
Introduction; 1.2. Realization of a software application; 1.3.
Characteristics of a software application; 1.4. Realization cycle; 1.4.1.
Cycle in V and other realization cycles; 1.4.2. Quality control (the
impact of ISO standard 9001); 1.4.3. Verification and validation; 1.5.
Techniques, methods and practices; 1.5.1. Static verification; 1.5.2.
Dynamic verification; 1.5.3. Validation; 1.6. New issues with verification
and validation; 1.7. Conclusion

1.8. BibliographyChapter 2. Airbus: Formal Verification in Avionics; 2.1.
Industrial context; 2.1.1. Avionic systems; 2.1.2. A few examples;
2.1.3. Regulatory framework; 2.1.4. Avionic functions; 2.1.5.
Development of avionics levels; 2.2. Two methods for formal
verification; 2.2.1. General principle of program proof; 2.2.2. Static



Sommario/riassunto

analysis by abstract interpretation; 2.2.3. Program proof by calculation
of the weakest precondition; 2.3. Four formal verification tools; 2.3.1.
Caveat; 2.3.2. Proof of the absence of run-time errors: Astree; 2.3.3.
Stability and numerical precision: Fluctuat

2.3.4. Calculation of the worst case execution time: aiT (Absint GmbH)
2.4. Examples of industrial use; 2.4.1. Unitary proof (verification of low
level requirements); 2.4.2. The calculation of worst case execution
time; 2.4.3. Proof of the absence of run-time errors; 2.5. Bibliography;
Chapter 3. Polyspace; 3.1. Overview; 3.2. Introduction to software
quality and verification procedures; 3.3. Static analysis; 3.4. Dynamic
tests; 3.5. Abstract interpretation; 3.6. Code verification; 3.7.
Robustness verification or contextual verification; 3.7.1. Robustness
verifications

3.7.2. Contextual verification3.8. Examples of Polyspace® results;
3.8.1. Example of safe code; 3.8.2. Example: dereferencing of a pointer
outside its bounds; 3.8.3. Example: inter-procedural calls; 3.9.
Carrying out a code verification with Polyspace; 3.10. Use of Polyspace®
can improve the quality of embedded software; 3.10.1. Begin by
establishing models and objectives for software quality; 3.10.2.
Example of a software quality model with objectives; 3.10.3. Use of a
subset of languages to satisfy coding rules; 3.10.4. Use of Polyspace®
to reach software quality objectives

3.11. Carrying out certification with Polyspace®3.12. The creation of
critical onboard software; 3.13. Concrete uses of Polyspace®; 3.13.1.
Automobile: Cummins Engines improves the reliability of its motor's
controllers; 3.13.2. Aerospace: EADS guarantees the reliability of
satellite launches; 3.13.3. Medical devices: a code analysis leads to a
recall of the device; 3.13.4. Other examples of the use of Polyspace®;
3.14. Conclusion; 3.15. Bibliography; Chapter 4. Software Robustness
with Regards to Dysfunctional Values from Static Analysis; 4.1.
Introduction; 4.2. Normative context

4.3. Elaboration of the proof of the robustness method

The existing literature currently available to students and researchers is
very general, covering only the formal techniques of static analysis.
This book presents real examples of the formal techniques called
abstract interpretation™ currently being used in various industrial
fields: railway, aeronautics, space, automotive, etc. The purpose of this
book is to present students and researchers, in a single book, with the
wealth of experience of people who are intrinsically involved in the
realization and evaluation of software-based safety critical systems. As
the authors are people curr

nn



