Record Nr.	UNINA9910821036503321
Titolo	Complex Materials in Physics and Biology : proceedings of the International School of Physics "Enrico Fermi" / / ed. by Francesco Mallamace, H. Eugene Stanley
Pubbl/distr/stampa	Amsterdam, : Ios Press, 2012
ISBN	1-299-33312-5 1-61499-071-9
Edizione	[1st ed.]
Descrizione fisica	1 online resource (449 p.)
Collana	Proceedings of the International School of Physics "Enrico Fermi" Complex materials in physics and biology
Altri autori (Persone)	MallamaceF (Franco) StanleyH. Eugene <1941-> (Harry Eugene)
Disciplina	003
Soggetti	System theory Nonlinear systems Statistical physics Scaling laws (Statistical physics)
Lingua di pubblicazione	Inalese
Formato	Materiale a stampa
	Materiale a stampa Monografia
Formato	Materiale a stampa
Formato Livello bibliografico	Materiale a stampa Monografia

1.

models

	Geometrical characterization of dynamical heterogeneities in chemical gels, colloidal gels and colloidal glassesIntroduction; Mode coupling theory and the glass transition; Dynamical heterogeneities; Dynamical susceptibility; Non-Gaussian parameter; Dynamical heterogeneities and mode coupling theory; Dynamical heterogeneities: from chemical gels to structural glasses; Dynamical heterogeneities in chemical gels; Dynamical heterogeneities in colloidal gels; Dynamical heterogeneities in structural glasses; Conclusions; Lectures on molecular- and nano- scale fluctuations in water Lecture one: tetrahedral condensed matterMolecular structure; Diffusion; Chemistry in water; Density fluctuations; Electric field fluctuations; Water auto-ionization; Lecture two: Solvation of ions; Solvation of large solutes; Lecture three: Hydrophobicity and self- assembly; The driving force for hydrophobic assembly; Micelle assembly; Dewetting transitions in hydrophobic collapse; Water and anomalous liquids; An overview on anomalous liquids and water Thermodynamic anomaliesDynamic anomalies; Structural anomalies and polymorphism; A few questions; A Hamiltonian model for water; Phase diagram and supercooled water; Water confined between hydrophobic surfaces; Percolating approach; Dynamica crossover; Liquid-liquid phase transitions; Conclusions; Dynamic crossover; Juquid-liquid phase transitions; Conclusions; Dynamic crossover; phenomenon in confined water and its relation to the liquid-liquid critical point: Experiments and MD simulations; The density minimum, peaking of thermal expansion coefficient and equation of state (EOS) of 1-D confined water
Sommario/riassunto	confined water The surprising connections which have developed between physics and various fields as diverse as biology and economics now constitute the fascinating research area known as complex materials and systems. The study of complex materials and processes is rapidly expanding, and many important experimental and theoretical discoveries have been made in recent years. Statistical physics is key to exploring this new and expanding field, enabling an understanding of real-world phenomena compromised of complex materials or exhibiting complex processes. This book includes lectures presented at the CLXXVI International School of Physics "Enrico Fermi", held in Varenna, Italy, in July 2010. The school focused on recent advances and developing perspectives in the study of complex materials and processes, as related to physics and biology. The book provides both an introduction and a complete presentation of recent theoretical and experimental developments for each topic. Topics addressed include: scaling and universality, supra-molecular systems and solutions, polymer systems, static and dynamics of liquid water, arrested dynamics and jamming, dynamics of out of equilibrium systems, physics of confined liquids, granular matter, physics of biological and medical systems, networks in physical and social sciences, turbulence in physics, biology and economics and finally, switching phenomena in biology and economics. The book provides reviews of these cutting edge topics by leading authorities and will be a reference work useful to both advanced research professionals and beginning graduate students.