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Based on undergraduate teaching to students in computer science,
economics and mathematics at Aarhus University, this is an elementary
introduction to convex sets and convex functions with emphasis on
concrete computations and examples.Starting from linear inequalities
and Fourier-Motzkin elimination, the theory is developed by
introducing polyhedra, the double description method and the simplex
algorithm, closed convex subsets, convex functions of one and several
variables ending with a chapter on convex optimization with the
Karush-Kuhn-Tucker conditions, duality and an interior point algori


