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Epilogue -- Index.

The present series is concerned with sensors per se, and because the
subject matter is so wide-ranging in both scope and maturity, this
must be reflected within the individual volumes. So, whereas care has
been taken to include a considerable amount of practical material, the
proportion of such leavening is inevitably variable. The present volume
will be found to include material on the basic processes that are
addressed by the sensors used in most aspects of aerospace
technology, plus considerable detail on the relevant sensors themselves
and their applications. In the context of aerospace engineering,
however, there are many items of complex equipment--mostly radio
and navigationally oriented--that can be considered as sensors in their
own right. This situation has been addressed in a companion volume
that is in production at the time of writing, and will act as an adjunct to
the present work.



