Autore Titolo	UNINA9910819609203321 Sarkar Tapan (Tapan K.) The physics and mathematics of electromagnetic wave propagation in cellular wireless communication / / Tapan K. Sarkar, Magdalena Salazar-Palma, Mohammad Najib Abdallah ; with contributions from Arijit De, Walid Mohamed Galal Diab, Miguel Angel Lagunas, Eric L. Mokole, Hongsik Moon, Ana I. Perez-Neira
Pubbl/distr/stampa	Hoboken, New Jersey, USA : , : Wiley, , 2018 [Piscataqay, New Jersey] : , : IEEE Xplore, , [2018]
ISBN	1-119-39313-2 1-119-39312-4 1-119-39314-0
Edizione	[1st edition]
Descrizione fisica	1 PDF (416 pages)
Disciplina	621.38456
Soggetti	Cell phone systems - Antennas - Mathematical models Radio wave propagation - Mathematical models
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Livello bibliografico Nota di bibliografia	Monografia Includes bibliographical references and index.

1.

Dipole? Like Structures in Frequency and in Time 33 -- 1.8.1 Radiation Fields from Wire?]Like Structures in the Frequency Domain 33 -- 1.8.2 Radiation Fields from Wire?]Like Structures in the Time Domain 34 --1.8.3 Induced Voltage on a Finite?]Sized Receive Wire?]Like Structure Due to a Transient Incident Field 34 -- 1.8.4 Radiation Fields from Electrically Small Wire?]Like Structures in the Time Domain 35 -- 1.9 An Expose on Channel Capacity 44 -- 1.9.1 Shannon Channel Capacity 47 -- 1.9.2 Gabor Channel Capacity 51 -- 1.9.3 Hartley?]Nyquist?]Tuller Channel Capacity 53 -- 1.10 Conclusion 56 -- References 57 -- 2 Characterization of Radiating Elements Using Electromagnetic Principles in the Frequency Domain 61 -- Summary 61 -- 2.1 Field Produced by a Hertzian Dipole 62 -- 2.2 Concept of Near and Far Fields 65 -- 2.3 Field Radiated by a Small Circular Loop 68 -- 2.4 Field Produced by a Finite?]Sized Dipole 70 -- 2.5 Radiation Field from a Finite?]Sized Dipole Antenna 72. 2.6 Maximum Power Transfer and Efficiency 74 -- 2.6.1 Maximum Power Transfer 75 -- 2.6.2 Analysis Using Simple Circuits 77 -- 2.6.3 Computed Results Using Realistic Antennas 81 -- 2.6.4 Use/Misuse of the S?]Parameters 84 -- 2.7 Radiation Efficiency of Electrically Small Versus Electrically Large Antenna 85 -- 2.7.1 What is an Electrically Small Antenna (ESA)? 86 -- 2.7.2 Performance of Electrically Small Antenna Versus Large Resonant Antennas 86 -- 2.8 Challenges in Designing a Matched ESA 90 -- 2.9 Near?] and Far?]Field Properties of Antennas Deployed Over Earth 94 -- 2.10 Use of Spatial Antenna Diversity 100 -- 2.11 Performance of Antennas Operating Over Ground 104 -- 2.12 Fields Inside a Dielectric Room and a Conducting Box 107 -- 2.13 The Mathematics and Physics of an Antenna Array 120 -- 2.14 Does Use of Multiple Antennas Makes Sense? 123 -- 2.14.1 Is MIMO Really Better than SISO? 132 -- 2.15 Signal Enhancement Methodology Through Adaptivity on Transmit Instead of MIMO 138 -- 2.16 Conclusion 148 -- Appendix 2A Where Does the Far Field of an Antenna Really Starts Under Different Environments? 149 -- Summary 149 -- 2A.1 Introduction 150 -- 2A.2 Derivation of the formula 2D2/λ 159 -- 2A.3 Dipole Antennas Operating in Free Space 163 -- 2A.4 Dipole Antennas Radiating Over an Imperfect Ground 165 -- 2A.5 Epilogue 166 -- References 167 -- 3 Mechanism of Wireless Propagation: Physics, Mathematics, and Realization 171 -- Summary 171 -- 3.1 Introduction 172 -- 3.2 Description and Analysis of Measured Data on Propagation Available in the Literature 173 -- 3.3 Electromagnetic Analysis of Propagation Path Loss Using a Macro Model 184 -- 3.4 Accurate Numerical Evaluation of the Fields Near an Earth-Air Interface 190 -- 3.5 Use of the Numerically Accurate Macro Model for Analysis of Okumura et al.'s Measurement Data 192 -- 3.6 Visualization of the Propagation Mechanism 199 -- 3.7 A Note on the Conventional Propagation Models 203 -- 3.8 Refinement of the Macro

Tilt into Account 207. 3.9 Refinement of the Data Collection Mechanism and its Interpretation Through the Definition of the Proper Route 210 -- 3.10 Lessons Learnt: Possible Elimination of Slow Fading and a Better Way to Deploy Base Station Antennas 217 -- 3.10.1 Experimental Measurement Setup 225 -- 3.11 Cellular Wireless Propagation Occurs Through the Zenneck Wave and not Surface Waves 227 -- 3.12 Conclusion 233 -- Appendix 3A Sommerfeld Formulation for a Vertical Electric Dipole Radiating Over an Imperfect Ground Plane 234 -- Appendix 3B Asymptotic Evaluation of the Integrals by the Method of Steepest Descent 247 -- Appendix 3C Asymptotic Evaluation of the Integrals When there Exists a Pole Near the Saddle Point 252 -- Appendix 3D Evaluation of Fields Near the

Model to Take Transmitting Antenna's Electronic and Mechanical

	Interface 254 Appendix 3E Properties of a Zenneck Wave 258 Appendix 3F Properties of a Surface Wave 259 References 261 4 Methodologies for Ultrawideband Distortionless Transmission/Reception of Power and Information 265 Summary 265 4.1 Introduction 266 4.2 Transient Responses from Differently Sized Dipoles 268 4.3 A Travelling Wave Antenna 276 4.4 UWB Input Pulse Exciting a Dipole of Different Lengths 279 4.5 Time Domain Responses of Some Special Antennas 281 4.5.1 Dipole Antennas 281 4.5.2 Biconical Antennas 292 4.5.3 TEM Horn Antenna 289 4.6 Two Ultrawideband Antennas of Century Bandwidth 305 4.6.1 A Century Bandwidth Bi?]Blade Antenna 306 4.6.2 Cone?]Blade Antenna 310 4.6.3 Impulse Radiating Antenna (IRA) 313 4.7 Experimental Verification of Distortionless Transmission and Reception of Ultrawideband Signals Fitting the FCC Mask 327 4.8.1 Design of a T?]pulse 329 4.8.2 Synthesis of a T?]pulse Fitting the FCC Mask 331 4.8.3 Distortionless Transmission and Reception of Ultrawideband Signals Fitting the FCC Mask 327 4.8.1 Design of a T?]pulse 329 4.8.2 Synthesis of a T?]pulse Fitting the FCC Mask 331 4.8.3 Distortionless Transmission and Reception of a UWB Pulse Fitting the FCC Mask 332 4.9 Simultaneous Transmission of Information and Power in Wireless Antennas 338 4.9.1 Introduction 338. 4.9.2 Formulation for the Gabor Channel Capacity 342 4.9.2.2 Optimization for the Gabor Channel Capacity 344 4.9.2.3 Optimization for the Hartley?]Nyquist?]Tuller Channel Capacity 345 4.9.3 Channel Capacity Simulation of a Frequency Selective Channel Using a Pair of Transmitting and Receiving Antennas 347 4.9.4 Optimization of Each Channel Capacity Formulation 353 4.10 Effect of Broadband Matching in Simultaneous Information and Power Transfer 355 4.10.1 Problem Description 357 4.10.1.1 Total Channel Capacity 358 4.10.2 Design of Matching Networks 362 4.10.2.1 Simplified Real Frequency Technique (SRFT) 362 4.10.2.2 Use of
Sommario/riassunto	Dipole 373 4.11 Conclusion 376 References 377 Index 383. An important resource that examines wireless communications from the point of view of its mathematical and physical aspects The Physics and Mathematics of Electromagnetic Wave Propagation in Cellular Wireless Communication describes the electromagnetic principles involved in the design of a cellular wireless system including a number of subtleties that are often overlooked. This important text explores both the physics and mathematical concepts used in deploying antennas for transmission and reception of electromagnetic signals and examines how to select the proper methodology from a wide range of scenarios. In this much-needed guide, the authors—noted experts in the field—explore the principle of electromagnetics as developed through Maxwell's equations and describe the properties of an antenna in the frequency domain. The text also includes a review of the characterization of propagation path loss in a cellular wireless environment and examines ultrawideband antennas and the mechanisms of broadband transmission of both power and information. This important resource: . Includes a discussion of the shortcomings of a MIMO system from both theoretical and practical aspects. Demonstrates how to deploy base station antennas with better efficiency. Validates the principle and the theoretical analysis of

electromagnetic propagation in cellular wireless communication.
Contains results of experiments that are solidly grounded in
mathematics and physics Written for engineers, researchers, and
educators who are or plan to work in the field, The Physics and
Mathematics of Electromagnetic Wave Propagation in Cellular Wireless
Communication offers an essential resource for understanding the
 principles underpinning wireless communications.